Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS One ; 17(1): e0263137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35089958

RESUMEN

It is well documented that drug responses are related to Absorption, Distribution, Metabolism, and Excretion (ADME) characteristics of individual patients. Several studies have identified genetic variability in pharmacogenes, that are either directly responsible for or are associated with ADME, giving rise to individualized treatments. Our objective was to provide a comprehensive overview of pharmacogenetic variation in the Saudi population. We mined next generation sequencing (NGS) data from 11,889 unrelated Saudi nationals, to determine the presence and frequencies of known functional SNP variants in 8 clinically relevant pharmacogenes (CYP2C9, CYP2C19, CYP3A5, CYP4F2, VKORC1, DPYD, TPMT and NUDT15), recommended by the Clinical Pharmacogenetics Implementation Consortium (CPIC), and collectively identified 82 such star alleles. Functionally significant pharmacogenetic variants were prevalent especially in CYP genes (excluding CYP3A5), with 10-44.4% of variants predicted to be inactive or to have decreased activity. In CYP3A5, inactive alleles (87.5%) were the most common. Only 1.8%, 0.7% and 0.7% of NUDT15, TPMT and DPYD variants respectively, were predicted to affect gene activity. In contrast, VKORC1 was found functionally, to be highly polymorphic with 53.7% of Saudi individuals harboring variants predicted to result in decreased activity and 31.3% having variants leading to increased metabolic activity. Furthermore, among the 8 pharmacogenes studied, we detected six rare variants with an aggregated frequency of 1.1%, that among several other ethnicities, were uniquely found in Saudi population. Similarly, within our cohort, the 8 pharmacogenes yielded forty-six novel variants predicted to be deleterious. Based upon our findings, 99.2% of individuals from the Saudi population carry at least one actionable pharmacogenetic variant.


Asunto(s)
Frecuencia de los Genes , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Farmacogenómica , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Femenino , Humanos , Masculino , Farmacogenética , Arabia Saudita
2.
Front Med (Lausanne) ; 9: 826247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308532

RESUMEN

Objectives: There are limited data on the efficacy and safety of favipiravir antiviral in coronavirus disease 2019 (COVID-19), particularly in the more progressed disease phase. This study aims to evaluate the favipiravir effect on reducing the length of hospital stay and in-hospital mortality among moderate and severe hospitalized COVID-19 patients. Methods: A prospective, multicenter observational study was conducted that included moderate and severe hospitalized adult COVID-19 patients in four major regions (Riyadh (Riyadh), Eastern (Dammam), Al-Qassem (Buraydah), and Macca (Jeddah) of Saudi Arabia. For the primary outcome of all-cause mortality, a Cox proportional hazard analysis was performed. While the association between favipiravir use and length of hospital stay was determined using adjusted generalized linear model. This study was approved by the Central Institutional Review Board in The Saudi Ministry of Health (MoH) with the approval number IRB # 20-85-M. Results: This study included 598 moderate and severe COVID-19 patients, of whom 156 (26%) received favipiravir. Favipiravir treatment was associated with more extended hospital stays (14 vs. 10 median days, P = 0.034) and higher mortality rate (aHR 3.63; 95% CI 1.06-12.45) compared to no favipiravir regimen. Despite lack of effectiveness, favipiravir use was only associated with higher diarrhea adverse effects (12 vs. 5%, P = 0.002), but it did not affect the renal and liver profiles of patients. Conclusion: Favipiravir was ineffective in reducing the length of hospital stay and in-hospital mortality in patients with moderate and severe COVID-19.

3.
iScience ; 24(3): 102214, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33748703

RESUMEN

Autosomal recessive mutations in G6PC3 cause isolated and syndromic congenital neutropenia which includes congenital heart disease and atypical inflammatory bowel disease (IBD). In a highly consanguineous pedigree with novel mutations in G6PC3 and MPL, we performed comprehensive multi-omics analyses. Structural analysis of variant G6PC3 and MPL proteins suggests a damaging effect. A distinct molecular cytokine profile (cytokinome) in the affected proband with IBD was detected. Liquid chromatography-mass spectrometry-based proteomics analysis of the G6PC3-deficient plasma samples identified 460 distinct proteins including 75 upregulated and 73 downregulated proteins. Specifically, the transcription factor GATA4 and LST1 were downregulated while platelet factor 4 (PF4) was upregulated. GATA4 and PF4 have been linked to congenital heart disease and IBD respectively, while LST1 may have perturbed a variety of essential cell functions as it is required for normal cell-cell communication. Together, these studies provide potentially novel insights into the pathogenesis of syndromic congenital G6PC3 deficiency.

4.
Eur J Hum Genet ; 28(8): 1098-1110, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32238911

RESUMEN

Several types of genetic alterations occurring at numerous loci have been described in attention deficit hyperactivity disorder (ADHD). However, the role of rare single nucleotide variants (SNVs) remains under investigated. Here, we sought to identify rare SNVs with predicted deleterious effect that may contribute to ADHD risk. We chose to study ADHD families (including multi-incident) from a population with a high rate of consanguinity in which genetic risk factors tend to accumulate and therefore increasing the chance of detecting risk alleles. We employed whole exome sequencing (WES) to interrogate the entire coding region of 16 trios with ADHD. We also performed enrichment analysis on our final list of genes to identify the overrepresented biological processes. A total of 32 rare variants with predicted damaging effect were identified in 31 genes. At least two variants were detected per proband, most of which were not exclusive to the affected individuals. In addition, the majority of our candidate genes have not been previously described in ADHD including five genes (NEK4, NLE1, PSRC1, PTP4A3, and TMEM183A) that were not previously described in any human condition. Moreover, enrichment analysis highlighted brain-relevant biological themes such as "Glutamatergic synapse", "Cytoskeleton organization", and "Ca2+ pathway". In conclusion, our findings are in keeping with prior studies demonstrating the highly challenging genetic architecture of ADHD involving low penetrance, variable expressivity and locus heterogeneity.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Sitios Genéticos , Herencia Multifactorial , Adolescente , Adulto , Niño , Exoma , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Proteínas de la Membrana/genética , Quinasas Relacionadas con NIMA/genética , Proteínas de Neoplasias/genética , Linaje , Fosfoproteínas/genética , Polimorfismo Genético , Proteínas Tirosina Fosfatasas/genética
5.
Ann Saudi Med ; 40(5): 373-381, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954791

RESUMEN

BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has prompted a need for mass testing to identify patients with viral infection. The high demand has created a global bottleneck in testing capacity, which prompted us to modify available resources to extract viral RNA and perform reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) to detect SARS-COV-2. OBJECTIVES: Report on the use of a DNA extraction kit, after modifications, to extract viral RNA that could then be detected using an FDA-approved SARS-COV-2 RT-qPCR assay. MATERIALS AND METHODS: Initially, automated RNA extraction was performed using a modified DNA kit on samples from control subjects, a bacteriophage, and an RNA virus. We then verified the automated extraction using the modified kit to detect in-lab propagated SARSCOV-2 titrations using an FDA approved commercial kit (S, N, and ORF1b genes) and an in-house primer-probe based assay (E, RdRp2 and RdRp4 genes). RESULTS: Automated RNA extraction on serial dilutions SARS-COV-2 achieved successful one-step RT-qPCR detection down to 60 copies using the commercial kit assay and less than 30 copies using the in-house primer-probe assay. Moreover, RT-qPCR detection was successful after automated RNA extraction using this modified protocol on 12 patient samples of SARS-COV-2 collected by nasopharyngeal swabs and stored in viral transport media. CONCLUSIONS: We demonstrated the capacity of a modified DNA extraction kit for automated viral RNA extraction and detection using a platform that is suitable for mass testing. LIMITATIONS: Small patient sample size. CONFLICT OF INTEREST: None.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nasofaringe/virología , Neumonía Viral/diagnóstico , ARN Viral/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Automatización , COVID-19 , Prueba de COVID-19 , Chlorocebus aethiops , Técnicas de Laboratorio Clínico , Proteínas de la Envoltura de Coronavirus , Proteínas de la Nucleocápside de Coronavirus , ARN Polimerasa Dependiente de ARN de Coronavirus , Virus de la Encefalomiocarditis/genética , Humanos , Levivirus/genética , Proteínas de la Nucleocápside/genética , Pandemias , Fosfoproteínas , ARN Viral/análisis , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Análisis de Secuencia de ARN , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Proteínas del Envoltorio Viral/genética , Proteínas no Estructurales Virales/genética
6.
Sci Rep ; 9(1): 3344, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833663

RESUMEN

Genetic studies of the familial forms of Parkinson's disease (PD) have identified a number of causative genes with an established role in its pathogenesis. These genes only explain a fraction of the diagnosed cases. The emergence of Next Generation Sequencing (NGS) expanded the scope of rare variants identification in novel PD related genes. In this study we describe whole exome sequencing (WES) genetic findings of 60 PD patients with 125 variants validated in 51 of these cases. We used strict criteria for variant categorization that generated a list of variants in 20 genes. These variants included loss of function and missense changes in 18 genes that were never previously linked to PD (NOTCH4, BCOR, ITM2B, HRH4, CELSR1, SNAP91, FAM174A, BSN, SPG7, MAGI2, HEPHL1, EPRS, PUM1, CLSTN1, PLCB3, CLSTN3, DNAJB9 and NEFH) and 2 genes that were previously associated with PD (EIF4G1 and ATP13A2). These genes either play a critical role in neuronal function and/or have mouse models with disease related phenotypes. We highlight NOTCH4 as an interesting candidate in which we identified a deleterious truncating and a splice variant in 2 patients. Our combined molecular approach provides a comprehensive strategy applicable for complex genetic disorders.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Enfermedad de Parkinson/genética , Exones , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Eliminación de Secuencia , Ubiquitina-Proteína Ligasas/genética
7.
NPJ Genom Med ; 4: 4, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30792900

RESUMEN

Glanzmann thrombasthenia (GT) is a rare autosomal recessive bleeding disorder. Around 490 mutations in ITGA2B and ITGB3 genes were reported. We aimed to use targeted next-generation sequencing (NGS) to identify variants in patients with GT. We screened 72 individuals (including unaffected family members) using a panel of 393 genes (SHGP heme panel). Validation was done by Sanger sequencing and pathogenicity was predicted using multiple tools. In 83.5% of our cohort, 17 mutations were identified in ITGA2B and ITGB3 (including 6 that were not previously reported). In addition to variants in the two known genes, we found variants in ITGA2, VWF and F8. The SHGP heme panel can be used as a high-throughput molecular diagnostic assay to screen for mutations and variants in GT cases and carriers. Our findings expand the molecular landscape of GT and emphasize the robustness and usefulness of this panel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA