Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(40): e2302424120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748058

RESUMEN

Delimiting and naming biodiversity is a vital step toward wildlife conservation and research. However, species delimitation must be consistent across biota so that the limited resources available for nature protection can be spent effectively and objectively. To date, newly discovered lineages typically are either left undescribed and thus remain unprotected or are being erroneously proposed as new species despite mixed evidence for completed speciation, in turn contributing to the emerging problem of taxonomic inflation. Inspired by recent conceptual and methodological progress, we propose a standardized workflow for species delimitation that combines phylogenetic and hybrid zone analyses of genomic datasets ("genomic taxonomy"), in which phylogeographic lineages that do not freely admix are ranked as species, while those that have remained fully genetically compatible are ranked as subspecies. In both cases, we encourage their formal taxonomic naming, diagnosis, and description to promote social awareness toward biodiversity. The use of loci throughout the genome overcomes the unreliability of widely used barcoding genes when phylogeographic patterns are complex, while the evaluation of divergence and reproductive isolation unifies the long-opposed concepts of lineage species and biological species. We suggest that a shift in conservation assessments from a single level (species) toward a two-level hierarchy (species and subspecies) will lead to a more balanced perception of biodiversity in which both intraspecific and interspecific diversity are valued and more adequately protected.


Asunto(s)
Biodiversidad , Biota , Animales , Filogenia , Animales Salvajes , Genómica
2.
Mol Ecol ; 33(15): e17446, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38946613

RESUMEN

The Cenozoic topographic development of the Himalaya-Tibet orogen (HTO) substantially affected the paleoenvironment and biodiversity patterns of High Asia. However, concepts on the evolution and paleoenvironmental history of the HTO differ massively in timing, elevational increase and sequence of surface uplift of the different elements of the orogen. Using target enrichment of a large set of transcriptome-derived markers, ancestral range estimation and paleoclimatic niche modelling, we assess a recently proposed concept of a warm temperate paleo-Tibet in Asian spiny frogs of the tribe Paini and reconstruct their historical biogeography. That concept was previously developed in invertebrates. Because of their early evolutionary origin, low dispersal capacity, high degree of local endemism, and strict dependence on temperature and humidity, the cladogenesis of spiny frogs may echo the evolution of the HTO paleoenvironment. We show that diversification of main lineages occurred during the early to Mid-Miocene, while the evolution of alpine taxa started during the late Miocene/early Pliocene. Our distribution and niche modelling results indicate range shifts and niche stability that may explain the modern disjunct distributions of spiny frogs. They probably maintained their (sub)tropical or (warm)temperate preferences and moved out of the ancestral paleo-Tibetan area into the Himalaya as the climate shifted, as opposed to adapting in situ. Based on ancestral range estimation, we assume the existence of low-elevation, climatically suitable corridors across paleo-Tibet during the Miocene along the Kunlun, Qiangtang and/or Gangdese Shan. Our results contribute to a deeper understanding of the mechanisms and processes of faunal evolution in the HTO.


Asunto(s)
Anuros , Filogenia , Animales , Tibet , Anuros/genética , Anuros/clasificación , Biodiversidad , Filogeografía , Evolución Biológica , Transcriptoma , Ecosistema , Clima , Temperatura
3.
Mol Phylogenet Evol ; 197: 108091, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38719080

RESUMEN

Cryptic diversity poses a great obstacle in our attempts to assess the current biodiversity crisis and may hamper conservation efforts. The gekkonid genus Mediodactylus, a well-known case of hidden species and genetic diversity, has been taxonomically reclassified several times during the last decade. Focusing on the Mediterranean populations, a recent study within the M. kotschyi species complex using classic mtDNA/nuDNA markers suggested the existence of five distinct species, some being endemic and some possibly threatened, yet their relationships have not been fully resolved. Here, we generated genome-wide SNPs (using ddRADseq) and applied molecular species delimitation approaches and population genomic analyses to further disentangle these relationships. Τhe most extensive nuclear dataset, so far, encompassing 2,360 loci and âˆ¼ 699,000 bp from across the genome of Mediodactylus gecko, enabled us to resolve previously obscure phylogenetic relationships among the five, recently elevated, Mediodactylus species and to support the hypothesis that the taxon includes several new, undescribed species. Population genomic analyses within each of the proposed species showed strong genetic structure and high levels of genetic differentiation among populations.


Asunto(s)
Lagartos , Filogenia , Filogeografía , Animales , Región Mediterránea , Lagartos/genética , Lagartos/clasificación , Polimorfismo de Nucleótido Simple , Variación Genética , Genética de Población , ADN Mitocondrial/genética , Análisis de Secuencia de ADN
4.
Mol Phylogenet Evol ; 197: 108095, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729384

RESUMEN

Despite decades of molecular research, phylogenetic relationships in Palearctic vipers (genus Vipera) still essentially rely on a few loci, such as mitochondrial barcoding genes. Here we examined the diversity and evolution of Vipera with ddRAD-seq data from 33 representative species and subspecies. Phylogenomic analyses of âˆ¼ 1.1 Mb recovered nine major clades corresponding to known species/species complexes which are generally consistent with the mitochondrial phylogeny, albeit with a few deep discrepancies that highlight past hybridization events. The most spectacular case is the Italian-endemic V. walser, which is grouped with the alpine genetic diversity of V. berus in the nuclear tree despite carrying a divergent mitogenome related to the Caucasian V. kaznakovi complex. Clustering analyses of SNPs suggest potential admixture between diverged Iberian taxa (V. aspis zinnikeri and V. seoanei), and confirm that the Anatolian V. pontica corresponds to occasional hybrids between V. (ammodytes) meridionalis and V. kaznakovi. Finally, all analyzed lineages of the V. berus complex (including V. walser and V. barani) form vast areas of admixture and may be delimited as subspecies. Our study sets grounds for future taxonomic and phylogeographic surveys on Palearctic vipers, a group of prime interest for toxinological, ecological, biogeographic and conservation research.


Asunto(s)
Filogenia , Viperidae , Animales , Viperidae/genética , Viperidae/clasificación , Variación Genética , Genoma Mitocondrial/genética , ADN Mitocondrial/genética , Evolución Molecular
5.
Glob Chang Biol ; 30(3): e17180, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465701

RESUMEN

Palearctic water frogs (genus Pelophylax) are an outstanding model in ecology and evolution, being widespread, speciose, either threatened or threatening to other species through biological invasions, and capable of siring hybrid offspring that escape the rules of sexual reproduction. Despite half a century of genetic research and hundreds of publications, the diversity, systematics and biogeography of Pelophylax still remain highly confusing, in no small part due to a lack of correspondence between studies. To provide a comprehensive overview, we gathered >13,000 sequences of barcoding genes from >1700 native and introduced localities and built multigene mitochondrial (~17 kb) and nuclear (~10 kb) phylogenies. We mapped all currently recognized taxa and their phylogeographic lineages (>40) to get a grasp on taxonomic issues, cyto-nuclear discordances, the genetic makeup of hybridogenetic hybrids, and the origins of introduced populations. Competing hypotheses for the molecular calibration were evaluated through plausibility tests, implementing a new approach relying on predictions from the anuran speciation continuum. Based on our timetree, we propose a new biogeographic paradigm for the Palearctic since the Paleogene, notably by attributing a prominent role to the dynamics of the Paratethys, a vast paleo-sea that extended over most of Europe. Furthermore, our results show that distinct marsh frog lineages from Eastern Europe, the Balkans, the Near East, and Central Asia (P. ridibundus ssp.) are naturally capable of inducing hybridogenesis with pool frogs (P. lessonae). We identified 14 alien lineages (mostly of P. ridibundus) over ~20 areas of invasions, especially in Western Europe, with genetic signatures disproportionally pointing to the Balkans and Anatolia as the regions of origins, in line with exporting records of the frog leg industry and the stocks of pet sellers. Pelophylax thus emerges as one of the most invasive amphibians worldwide, and deserves much higher conservation concern than currently given by the authorities fighting biological invasions.


Asunto(s)
Anuros , Ranidae , Animales , Anuros/genética , Europa (Continente) , Filogenia , Filogeografía
6.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718699

RESUMEN

The Mediterranean Basin has experienced extensive change in geology and climate over the past six million years. Yet, the relative importance of key geological events for the distribution and genetic structure of the Mediterranean fauna remains poorly understood. Here, we use population genomic and phylogenomic analyses to establish the evolutionary history and genetic structure of common wall lizards (Podarcis muralis). This species is particularly informative because, in contrast to other Mediterranean lizards, it is widespread across the Iberian, Italian, and Balkan Peninsulas, and in extra-Mediterranean regions. We found strong support for six major lineages within P. muralis, which were largely discordant with the phylogenetic relationship of mitochondrial DNA. The most recent common ancestor of extant P. muralis was likely distributed in the Italian Peninsula, and experienced an "Out-of-Italy" expansion following the Messinian salinity crisis (∼5 Mya), resulting in the differentiation into the extant lineages on the Iberian, Italian, and Balkan Peninsulas. Introgression analysis revealed that both inter- and intraspecific gene flows have been pervasive throughout the evolutionary history of P. muralis. For example, the Southern Italy lineage has a hybrid origin, formed through admixture between the Central Italy lineage and an ancient lineage that was the sister to all other P. muralis. More recent genetic differentiation is associated with the onset of the Quaternary glaciations, which influenced population dynamics and genetic diversity of contemporary lineages. These results demonstrate the pervasive role of Mediterranean geology and climate for the evolutionary history and population genetic structure of extant species.


Asunto(s)
Lagartos , Metagenómica , Animales , ADN Mitocondrial/genética , Variación Genética , Lagartos/genética , Filogenia , Filogeografía
7.
Mol Ecol ; 32(13): 3624-3640, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37000132

RESUMEN

Within the Balkan Peninsula, topographic and climatic agents have promoted biodiversity and shaped the speciation history of many ectotherms. Here, we targeted an iconic European reptile, the nose-horned viper species-complex (Vipera ammodytes), and explored its spatial and temporal evolution. We (i) utilized genome-wide single nucleotide polymorphisms to infer genetic structure and build a time-calibrated species-tree, and (ii) applied species distribution modelling with niche-divergence tests among major phylogenomic clades. Geographically structured genetic diversity was found. Cycles of recurrent isolation and expansion during glacial-interglacial periods led to allopatric speciation and to secondary contacts and formation of multiple hybrid zones throughout the Balkan Peninsula. Deep divergence is still detected among populations separated by old and imminent biogeographical barriers (Pindos Mountain Range, the Cyclades islands, etc.), but in most cases speciation is incomplete. At the other end of the speciation continuum, we recognize two well-differentiated lineages, currently lacking any evidence of gene flow; one is distributed in the Northwestern Balkans and the other in the Southeastern Balkans, further expanding into Asia. Despite their split 5 million years ago, there is no evidence of ecological divergence, as speciation probably occurred in niche-pockets of analogous environments. These two lineages probably represent different species, while V. transcaucasiana does not merit species status. By comparing the genomic phylogenies to an updated mitochondrial one, we propose an evolutionary scenario that resolves all mitonuclear conflicts, according to which the history of the V. ammodytes species-complex was shaped by complex processes, including a major event of introgressive hybridization with asymmetric mitochondrial capture.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Animales , Polimorfismo de Nucleótido Simple/genética , Filogenia , Peninsula Balcánica , Serpientes , Especiación Genética
8.
Mol Phylogenet Evol ; 180: 107674, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36543275

RESUMEN

A dated phylogenetic hypothesis on the evolutionary history of the extant taxa of the Western Palearctic lizards Anguis and Pseudopus is revised using genome-wide nuclear DNA and mitogenomes. We found overall concordance between nuclear and mitochondrial DNA phylogenies, with one significant exception - the Apennine A. veronensis. In mitochondrial DNA, this species forms a common clade with the earliest diverging lineage, the southern Balkan endemic A. cephallonica, while it clusters together with A. fragilis in nuclear DNA. The nuclear phylogeny conforms to the morphology, which is relatively similar between A. veronensis and A. fragilis. The most plausible explanation for the mitonuclear discordance is ancient mitochondrial capture from the Balkan ancestor of A. cephallonica to the Apennine population of the A. fragilis-veronensis ancestor. We hypothesize that this capture occurred only in a geographically restricted population. The dating of this presumed mitochondrial introgression and capture coincides with the Messinian event, when the Balkan and Apennine Peninsulas were presumably largely connected. The dated nuclear phylogenomic reconstruction estimated the divergence of A. cephallonica around 12 Mya, while the sister clade representing the A. fragilis species complex consisting of the sister species A. fragilis-A. veronensis and A. colchica-A. graeca further diversified around 7 Mya. The depth of nuclear divergence among the evolutionary lineages of Pseudopus (0.5-1.2 Mya) supports their subspecies status.


Asunto(s)
Evolución Biológica , Lagartos , Animales , Filogenia , Peninsula Balcánica , ADN Mitocondrial/genética
9.
Mol Phylogenet Evol ; 168: 107414, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032646

RESUMEN

The leopard gecko, Eublepharis macularius, is a widely used model organism in laboratory and experimental studies. The high phenotypic diversity in the pet trade, the fact that the provenance of different breeding lines is unknown, and that distinct Eublepharis species are known to hybridize, implies that the continued use of E. macularius as a model requires clarity on the origin of the lineages in the pet trade. We combine multi-locus sequence data and the first range-wide sampling of the genus Eublepharis to reconstruct the evolutionary history of the Eublepharidae and Eublepharis, with an updated time-tree for the Eublepharidae. Our sampling includes five of the six recognized species and additional nominal taxa of uncertain status comprising 43 samples from 34 localities plus 48 pet-trade samples. The Eublepharidae began diversifying in the Cretaceous. Eublepharis split from its sister genera in Africa in the Palaeocene-Eocene, and began diversifying in the Oligocene-Miocene, with late Miocene-Pliocene cladogenesis giving rise to extant species. The current species diversity within this group is moderately underestimated. Our species delimitation suggests 10 species with four potentially unnamed divergent lineages in Iran, India and Pakistan. All 30 individuals of E. macularius that we sampled from the pet trade, which include diverse morphotypes, come from a few shallow E. macularius clades, confirming that lab and pet trade strains are part of a single taxon. One of the wild-caught haplotypes of E. macularius, from near Karachi, Pakistan, is identical to (10) pet-trade samples and all other captive populations are closely related to wild-caught animals from central/southern Pakistan (0.1-0.5 % minimum pairwise uncorrected ND2 sequence divergence).


Asunto(s)
Lagartos , Fitomejoramiento , África , Animales , Especiación Genética , Lagartos/genética , Filogenia
11.
Mol Phylogenet Evol ; 141: 106615, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31520778

RESUMEN

The radiation of Palearctic green toads (Bufotes) holds great potential to evaluate the role of hybridization in phylogeography at multiple stages along the speciation continuum. With fifteen species representing three ploidy levels, this model system is particularly attractive to examine the causes and consequences of allopolyploidization, a prevalent yet enigmatic pathway towards hybrid speciation. Despite substantial efforts, the evolutionary history of this species complex remains largely blurred by the lack of consistency among the corresponding literature. To get a fresh, comprehensive view on Bufotes phylogeography, here we combined genome-wide multilocus analyses (RAD-seq) with an extensive compilation of mitochondrial, genome size, niche modelling, distribution and phenotypic (bioacoustics, morphometrics, toxin composition) datasets, representing hundreds of populations throughout Eurasia. We provide a fully resolved nuclear phylogeny for Bufotes and highlight exceptional cyto-nuclear discordances characteristic of complete mtDNA replacement (in 20% of species), mitochondrial surfing during post-glacial expansions, and the formation of homoploid hybrid populations. Moreover, we traced the origin of several allopolyploids down to species level, showing that all were exclusively fathered by the West Himalayan B. latastii but mothered by several diploid forms inhabiting Central Asian lowlands, an asymmetry consistent with hypotheses on mate choice and Dobzhansky-Muller incompatibilities. Their intermediate call phenotypes potentially allowed for rapid reproductive isolation, while toxin compositions converged towards the ecologically-closest parent. Across the radiation, we pinpoint a stepwise progression of reproductive isolation through time, with a threshold below which hybridizability is irrespective of divergence (<6My), above which species barely admix and eventually evolve different mating calls (6-10My), or can successfully cross-breed through allopolyploidization (>15My). Finally, we clarified the taxonomy of Bufotes (including genetic analyses of type series) and formally described two new species, B. cypriensis sp. nov. (endemic to Cyprus) and B. perrini sp. nov. (endemic to Central Asia). Embracing the genomic age, our framework marks the advent of a new exciting era for evolutionary research in these iconic amphibians.


Asunto(s)
Evolución Biológica , Bufonidae/fisiología , Animales , Bufonidae/clasificación , Bufonidae/genética , ADN Mitocondrial/genética , Especiación Genética , Tamaño del Genoma , Genoma Mitocondrial , Genómica , Hibridación Genética , Mitocondrias/genética , Fenotipo , Filogenia , Filogeografía , Análisis de Componente Principal , Factores de Tiempo
12.
Mol Phylogenet Evol ; 125: 177-187, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29555295

RESUMEN

Kotschy's Gecko, Mediodactylus kotschyi, is a small gecko native to southeastern Europe and the Levant. It displays great morphological variation with a large number of morphologically recognized subspecies. However, it has been suggested that it constitutes a species complex of several yet unrecognized species. In this study, we used multilocus sequence data (three mitochondrial and three nuclear gene fragments) to estimate the phylogenetic relationships of 174 specimens from 129 sampling localities, covering a substantial part of the distribution range of the species. Our results revealed high genetic diversity of M. kotschyi populations and contributed to our knowledge about the phylogenetic relationships and the estimation of the divergence times between them. Diversification within M. kotschyi began approximately 15 million years ago (Mya) in the Middle Miocene, whereas the diversification within most of the major clades have been occurred in the last 5 Mya. Species delimitation analysis suggests there exists five species within the complex, and we propose to tentatively recognize the following taxa as full species: M. kotschyi (mainland Balkans, most of Aegean islands, and Italy), M. orientalis (Levant, Cyprus, southern Anatolia, and south-eastern Aegean islands), M. danilewskii (Black Sea region and south-western Anatolia), M. bartoni (Crete), and M. oertzeni (southern Dodecanese Islands). This newly recognized diversity underlines the complex biogeographical history of the Eastern Mediterranean region.


Asunto(s)
Sitios Genéticos , Variación Genética , Lagartos/clasificación , Lagartos/genética , Filogenia , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Geografía , ARN Ribosómico 16S/genética , Alineación de Secuencia , Especificidad de la Especie , Factores de Tiempo
13.
Mol Phylogenet Evol ; 125: 100-115, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29574273

RESUMEN

The Balkan Peninsula constitutes a biodiversity hotspot with high levels of species richness and endemism. The complex geological history of the Balkans in conjunction with the climate evolution are hypothesized as the main drivers generating this biodiversity. We investigated the phylogeography, historical demography, and population structure of closely related wall-lizard species from the Balkan Peninsula and southeastern Europe to better understand diversification processes of species with limited dispersal ability, from Late Miocene to the Holocene. We used several analytical methods integrating genome-wide SNPs (ddRADseq), microsatellites, mitochondrial and nuclear DNA data, as well as species distribution modelling. Phylogenomic analysis resulted in a completely resolved species level phylogeny, population level analyses confirmed the existence of at least two cryptic evolutionary lineages and extensive within species genetic structuring. Divergence time estimations indicated that the Messinian Salinity Crisis played a key role in shaping patterns of species divergence, whereas intraspecific genetic structuring was mainly driven by Pliocene tectonic events and Quaternary climatic oscillations. The present work highlights the effectiveness of utilizing multiple methods and data types coupled with extensive geographic sampling to uncover the evolutionary processes that shaped the species over space and time.


Asunto(s)
Lagartos/clasificación , Modelos Biológicos , Filogeografía , Animales , Peninsula Balcánica , Teorema de Bayes , Biodiversidad , Calibración , ADN Mitocondrial/genética , Variación Genética , Genética de Población , Genómica , Haplotipos/genética , Lagartos/genética , Repeticiones de Microsatélite/genética , Filogenia , Especificidad de la Especie
14.
Mol Phylogenet Evol ; 106: 6-17, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27640951

RESUMEN

The monophyletic species subgroup of Podarcis tauricus is distributed in the western and southern parts of the Balkans, and includes four species with unresolved and unstudied inter- and intra-specific phylogenetic relationships. Using sequence data from two mitochondrial and three nuclear genes and applying several phylogenetic methods and species delimitation approaches to an extensive dataset, we have reconstructed the phylogeny of the Podarcis wall lizards in the Balkans, and re-investigated the taxonomic status of the P. tauricus species subgroup. Multilocus analyses revealed that the aforementioned subgroup consists of five major clades, with P. melisellensis as its most basal taxon. Monophyly of P. tauricus sensu stricto is not supported, with one of the subspecies (P. t. ionicus) displaying great genetic diversity (hidden diversity or cryptic species). It comprises five, geographically distinct, subclades with genetic distances on the species level. Species delimitation approaches revealed nine species within the P. tauricus species subgroup (P. melisellensis, P. gaigeae, P. milensis, and six in the P. tauricus complex), underlining the necessity of taxonomic re-evaluation. We thus synonymize some previously recognized subspecies in this subgroup, elevate P. t. tauricus and P. g. gaigeae to the species level and suggest a distinct Albanian-Greek clade, provisionally named as the P. ionicus species complex. The latter clade comprises five unconfirmed candidate species that call for comprehensive studies in the future.


Asunto(s)
Lagartos/clasificación , Animales , Peninsula Balcánica , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , ADN Mitocondrial/clasificación , ADN Mitocondrial/genética , Variación Genética , Lagartos/genética , Filogenia , Filogeografía , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
BMC Evol Biol ; 16: 99, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27165497

RESUMEN

BACKGROUND: Genetic architecture of a species is a result of historical changes in population size and extent of distribution related to climatic and environmental factors and contemporary processes of dispersal and gene flow. Population-size and range contractions, expansions and shifts have a substantial effect on genetic diversity and intraspecific divergence, which is further shaped by gene-flow limiting barriers. The Balkans, as one of the most important sources of European biodiversity, is a region where many temperate species persisted during the Pleistocene glaciations and where high topographic heterogeneity offers suitable conditions for local adaptations of populations. In this study, we investigated the phylogeographical patterns and demographic histories of four species of semifossorial slow-worm lizards (genus Anguis) present in the Balkan Peninsula, and tested the relationship between genetic diversity and topographic heterogeneity of the inhabited ranges. RESULTS: We inferred phylogenetic relationships, compared genetic structure and historical demography of slow worms using nucleotide sequence variation of mitochondrial DNA. Four Anguis species with mostly parapatric distributions occur in the Balkan Peninsula. They show different levels of genetic diversity. A signature of population growth was detected in all four species but with various courses in particular populations. We found a strong correlation between genetic diversity of slow-worm populations and topographic ruggedness of the ranges (mountain systems) they inhabit. Areas with more rugged terrain harbour higher genetic diversity. CONCLUSIONS: Phylogeographical pattern of the genus Anguis in the Balkans is concordant with the refugia-within-refugia model previously proposed for both several other taxa in the region and other main European Peninsulas. While slow-worm populations from the southern refugia mostly have restricted distributions and have not dispersed much from their refugial areas, populations from the extra-Mediterranean refugia in northern parts of the Balkans have colonized vast areas of eastern, central, and western Europe. Besides climatic historical events, the heterogeneous topography of the Balkans has also played an important role in shaping genetic diversity of slow worms.


Asunto(s)
Lagartos/genética , Animales , Peninsula Balcánica , Biodiversidad , ADN Mitocondrial/genética , Evolución Molecular , Flujo Génico , Filogenia , Filogeografía , Polimorfismo Genético
16.
Curr Zool ; 70(2): 150-162, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38726254

RESUMEN

Influenced by rapid changes in climate and landscape features since the Miocene, widely distributed species provide suitable models to study the environmental impact on their evolution and current genetic diversity. The dice snake Natrix tessellata, widely distributed in the Western Palearctic is one such species. We aimed to resolve a detailed phylogeography of N. tessellata with a focus on the Central Asian clade with 4 and the Anatolia clade with 3 mitochondrial lineages, trace their origin, and correlate the environmental changes that affected their distribution through time. The expected time of divergence of both clades began at 3.7 Mya in the Pliocene, reaching lineage differentiation approximately 1 million years later. The genetic diversity in both clades is rich, suggesting different ancestral areas, glacial refugia, demographic changes, and colonization routes. The Caspian lineage is the most widespread lineage in Central Asia, distributed around the Caspian Sea and reaching the foothills of the Hindu Kush Mountains in Afghanistan, and Eastern European lowlands in the west. Its distribution is limited by deserts, mountains, and cold steppe environments. Similarly, Kazakhstan and Uzbekistan lineages followed the Amu Darya and the Syr Darya water systems in Central Asia, with ranges delimited by the large Kyzylkum and Karakum deserts. On the western side, there are several lineages within the Anatolia clade that converged in the central part of the peninsula with 2 being endemic to Western Asia. The distribution of both main clades was affected by expansion from their Pleistocene glacial refugia around the Caspian Sea and in the valleys of Central Asia as well as by environmental changes, mostly through aridification.

17.
Sci Rep ; 13(1): 4839, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964263

RESUMEN

The genus Elaphe Fitzinger, 1833 includes 17 species of charismatic, large-sized, non-venomous, Eurasian snakes. In the Western Palearctic, the genus is represented by three species from the Elaphe quatuorlineata group ranging from the Apennine peninsula to Central Asia. The southernmost population of this group is distributed in the mountains of the Southern Levant, with more than 400 km gap to other Elaphe populations. This population has been known to science for only 50 years and is virtually unstudied due to its extreme rarity. We studied these snakes' morphological and genetic variation from the three countries where they are known to occur, i.e., Israel (Hermon, the Israeli-controlled Golan Heights), Lebanon, and Syria. We used nine mitochondrial and nuclear genes, complete mitogenome sequences, and a comprehensive morphological examination including published data, our own field observations, and museum specimens, to study its relationship to other species in the group. The three currently recognized species of the group (E. quatuorlineata, E. sauromates, E. urartica), and the Levant population, form four deeply divergent, strongly supported clades. Three of these clades correspond to the abovementioned species while the Southern Levant clade, which is genetically and morphologically distinct from all named congeners, is described here as a new species, Elaphe druzei sp. nov. The basal divergence of this group is estimated to be the Late Miocene with subsequent radiation from 5.1 to 3.9 Mya. The revealed biogeography of the E. quatuorlineata group supports the importance of the Levant as a major center of endemism and diversity of biota in Eurasia. The new species is large-sized and is one of the rarest snakes in the Western Palearctic. Because of its small mountain distribution range, in an area affected by land use and climate change, the new Elaphe urgently needs strict protection. Despite political issues, we hope this will be based on the cooperation of all countries where the new species occurs.


Asunto(s)
Colubridae , Animales , Filogenia , Mitocondrias/genética , Líbano , Siria , ADN Mitocondrial/genética
19.
Zookeys ; 1169: 87-94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38322271

RESUMEN

We examined the mitochondrial identity of Aegean Natrixnatrixmoreotica representing different morphotypes, with a focus on new material from Milos and Skyros. We found no correlation between distinct morphotypes and mitochondrial identity. Our results support that grass snake populations are polyphenetic and that southern subspecies, including island populations, show a higher variability than northern ones.

20.
PeerJ ; 11: e15185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37220522

RESUMEN

The kukri snakes of the genus Oligodon Fitzinger, 1826 reach the westernmost limits of their distribution in Middle and Southwest Asia (Afghanistan, Iran, and Turkmenistan), and the Palearctic portions of Pakistan. In this article, we review the systematics and distribution of the two species native to this region, Oligodon arnensis (Shaw, 1802) and Oligodon taeniolatus (Jerdon, 1853) based on an integrative approach combining morphological, molecular, and species distribution modeling (SDM) data. Phylogenetic analyses recover O. taeniolatus populations from Iran and Turkmenistan in a clade with the O. arnensis species complex, rendering the former species paraphyletic relative to O. taeniolatus sensu stricto on the Indian subcontinent. To correct this, we resurrect the name Contia transcaspica Nikolsky, 1902 from the synonymy of O. taeniolatus and assign it to populations in Middle-Southwest Asia. So far, Oligodon transcaspicus comb. et stat. nov. is known only from the Köpet-Dag Mountain Range of northeast Iran and southern Turkmenistan, but SDM mapping suggests it may have a wider range. Genetic samples of O. "arnensis" from northern Pakistan are nested in a clade sister to the recently described Oligodon churahensis Mirza, Bhardwaj & Patel, 2021, and are phylogenetically separate from O. arnensis sensu stricto in south India and Sri Lanka. Based on morphological similarity, the Afghanistan and Pakistan populations are assigned to Oligodon russelius (Daudin, 1803) and we synonymize O. churahensis with this species. Our investigation leads us to remove O. taeniolatus from the snake fauna of Afghanistan, Iran, and Turkmenistan, with the consequence that only Oligodon transcaspicus comb. et stat. nov. and O. russelius are present in these countries. Additional studies are needed to resolve the taxonomy of the O. taeniolatus and O. arnensis species complexes on the Indian subcontinent, and an updated key for both groups is provided.


Asunto(s)
Cheirogaleidae , Colubridae , Lagartos , Animales , Filogenia , Irán , Afganistán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA