Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nutr ; 63(3): 869-879, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214710

RESUMEN

PURPOSE: Shatavari is an understudied, widely available herbal supplement. It contains steroidal saponins and phytoestrogens. We previously showed that six weeks of shatavari supplementation improved handgrip strength and increased markers of myosin contractile function. Mechanistic insights into shatavari's actions are limited. Therefore, we performed proteomics on vastus lateralis (VL) samples that remained from our original study. METHODS: In a randomised double-blind trial, women (68.5 ± 6 years) ingested either placebo or shatavari (equivalent to 26,500 mg/d fresh weight) for six weeks. Tandem mass tag global proteomic analysis of VL samples was conducted (N = 7 shatavari, N = 5 placebo). Data were normalized to total peptides and scaled using a reference sample. Data were filtered using a 5% FDR. For each protein, the pre to post supplementation difference was expressed as log2 fold change. Welch's t tests with Benjamini-Hochberg corrections were performed for each protein. Pathway enrichment (PADOG, CAMERA) was interrogated in Reactome (v85). RESULTS: No individual protein was significantly different between supplementation conditions. Both PADOG and CAMERA indicated that pathways related to (1) Integrin/MAPK signalling, (2) metabolism/insulin secretion; (3) cell proliferation/senescence/DNA repair/cell death; (4) haemostasis/platelets/fibrin; (5) signal transduction; (6) neutrophil degranulation and (7) chemical synapse function were significantly upregulated. CAMERA indicated pathways related to translation/amino acid metabolism, viral infection, and muscle contraction were downregulated. CONCLUSION: Our analyses indicate that shatavari may support muscle adaptation responses to exercise. These data provide useful signposts for future investigation of shatavari's utility in conserving and enhancing musculoskeletal function in older age. TRIAL REGISTRATION: NCT05025917 30/08/21, retrospectively registered.


Asunto(s)
Proteoma , Entrenamiento de Fuerza , Humanos , Femenino , Proteoma/metabolismo , Proteómica , Fuerza de la Mano , Posmenopausia , Músculo Esquelético/metabolismo , Suplementos Dietéticos , Método Doble Ciego , Fuerza Muscular
2.
Int J Sport Nutr Exerc Metab ; 33(4): 189-197, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37225168

RESUMEN

Branched-chain amino acids (BCAA) and carbohydrate (CHO) are commonly recommended postexercise supplements. However, no study has examined the interaction of CHO and BCAA ingestion on myofibrillar protein synthesis (MyoPS) rates following exercise. We aimed to determine the response of MyoPS to the co-ingestion of BCAA and CHO following an acute bout of resistance exercise. Ten resistance-trained young men completed two trials in counterbalanced order, ingesting isocaloric drinks containing either 30.6-g CHO plus 5.6-g BCAA (B + C) or 34.7-g CHO alone following a bout of unilateral, leg resistance exercise. MyoPS was measured postexercise with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre- and 4 hr postdrink ingestion. Blood samples were collected at time points before and after drink ingestion. Serum insulin concentrations increased to a similar extent in both trials (p > .05), peaking at 30 min postdrink ingestion. Plasma leucine (514 ± 34 nmol/L), isoleucine (282 ± 23 nmol/L), and valine (687 ± 33 nmol/L) concentrations peaked at 0.5 hr postdrink in B + C and remained elevated for 3 hr during exercise recovery. MyoPS was ∼15% greater (95% confidence interval [-0.002, 0.028], p = .039, Cohen's d = 0.63) in B + C (0.128%/hr ± 0.011%/hr) than CHO alone (0.115%/hr ± 0.011%/hr) over the 4 hr postexercise period. Co-ingestion of BCAA and CHO augments the acute response of MyoPS to resistance exercise in trained young males.


Asunto(s)
Aminoácidos de Cadena Ramificada , Entrenamiento de Fuerza , Masculino , Humanos , Carbohidratos de la Dieta/metabolismo , Leucina , Ingestión de Alimentos , Músculo Esquelético/metabolismo
3.
Am J Physiol Endocrinol Metab ; 318(2): E117-E130, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31743039

RESUMEN

Short-term muscle disuse has been reported to lower both postabsorptive and postprandial myofibrillar protein synthesis rates. This study assessed the impact of disuse on daily myofibrillar protein synthesis rates following short-term (2 and 7 days) muscle disuse under free living conditions. Thirteen healthy young men (age: 20 ± 1 yr; BMI: 23 ± 1 kg/m-2) underwent 7 days of unilateral leg immobilization via a knee brace, with the nonimmobilized leg acting as a control. Four days before immobilization participants ingested 400 mL of 70% deuterated water, with 50-mL doses consumed daily thereafter. Upper leg bilateral MRI scans and muscle biopsies were collected before and after 2 and 7 days of immobilization to determine quadriceps volume and daily myofibrillar protein synthesis rates. Immobilization reduced quadriceps volume in the immobilized leg by 1.7 ± 0.3 and 6.7 ± 0.6% after 2 and 7 days, respectively, with no changes in the control leg. Over the 1-wk immobilization period, myofibrillar protein synthesis rates were 36 ± 4% lower in the immobilized (0.81 ± 0.04%/day) compared with the control (1.26 ± 0.04%/day) leg (P < 0.001). Myofibrillar protein synthesis rates in the control leg did not change over time (P = 0.775), but in the immobilized leg they were numerically lower during the 0- to 2-day period (16 ± 6%, 1.11 ± 0.09%/day, P = 0.153) and were significantly lower during the 2- to 7-day period (44 ± 5%, 0.70 ± 0.06%/day, P < 0.001) when compared with the control leg. We conclude that 1 wk of muscle disuse induces a rapid and sustained decline in daily myofibrillar protein synthesis rates in healthy young men.


Asunto(s)
Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Miofibrillas/metabolismo , Agua Corporal/metabolismo , Dieta , Ejercicio Físico , Expresión Génica , Voluntarios Sanos , Humanos , Inmovilización , Cinética , Pierna , Imagen por Resonancia Magnética , Masculino , Proteínas Musculares/genética , Fuerza Muscular , Músculo Esquelético/diagnóstico por imagen , Atrofia Muscular/diagnóstico por imagen , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/metabolismo , Adulto Joven
4.
Exp Physiol ; 103(6): 860-875, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29656554

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the initial metabolic and molecular events that underpin bed rest-induced skeletal muscle deconditioning, and what is the contribution of energy balance? What is the main finding and its importance? A single day of bed rest, irrespective of energy balance, did not lead to overt changes in skeletal muscle gene expression or insulin sensitivity. More than 1 day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance. ABSTRACT: The initial metabolic and molecular events that underpin disuse-induced skeletal muscle deconditioning, and the contribution of energy balance, remain to be investigated. Ten young, healthy men (age 25 ± 1 years; body mass index 25.3 ± 0.8 kg·m-2 ) underwent three 24 h laboratory-based experimental periods in a randomized, crossover manner: (i) controlled habitual physical activity with an energy-balanced diet (CON); (ii) strict bed rest with a diet to maintain energy balance (BR-B); and (iii) strict bed rest with a diet identical to CON, consequently resulting in positive energy balance. Continuous glucose monitoring was performed throughout each visit, with vastus lateralis muscle biopsies and an oral glucose tolerance test performed before and after. In parallel with muscle samples collected from a previous 7 day bed rest study, biopsies were used to examine the expression of genes associated with the regulation of muscle mass and insulin sensitivity. A single day of bed rest, irrespective of energy balance, did not lead to overt changes in whole-body substrate oxidation, indices of insulin sensitivity [i.e. homeostatic model assessment of insulin resistance, BR-B from 2.7 ± 1.7 to 3.1 ± 1.5 (P > 0.05) and Matsuda index, BR-B from 5.9 ± 3.3 to 5.2 ± 2.9 (P > 0.05)] or 24 h glycaemic control/variability compared with CON. Seven days of bed rest led to ∼30-55% lower expression of genes involved in insulin signalling, lipid storage/oxidation and muscle protein breakdown, whereas no such changes were observed after 1 day of bed rest. In conclusion, more than a single day of physical inactivity is required to observe the insulin resistance and robust skeletal muscle transcriptional responses associated with bed rest and consequent alterations in energy balance.


Asunto(s)
Metabolismo Energético/fisiología , Expresión Génica/fisiología , Resistencia a la Insulina/fisiología , Músculo Esquelético/fisiología , Adulto , Reposo en Cama/métodos , Glucemia/fisiología , Automonitorización de la Glucosa Sanguínea/métodos , Ejercicio Físico/fisiología , Prueba de Tolerancia a la Glucosa/métodos , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Músculo Esquelético/metabolismo
5.
Eur J Appl Physiol ; 118(8): 1565-1572, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29785503

RESUMEN

PURPOSE: Repeated cycles of endothelial ischemia-reperfusion injury and the resulting respiratory burst contribute to the irreversible pathophysiology of vascular diseases, and yet, the effects of ischemia reperfusion on vascular function, oxidative stress, and nitric oxide (NO) bioavailability have not been assessed simultaneously. Therefore, this study sought to examine the effects of prolonged forearm occlusion and subsequent reperfusion on NO-dependent brachial artery endothelial function. METHODS: Flow-mediated dilatation was measured at baseline and 15, 30, and 45 min after 20-min forearm occlusion in 14 healthy, but physically inactive middle-aged men (53.7 ± 1.2 years, BMI: 28.1 ± 0.1 kg m-2). Venous blood samples collected from the occluded arm were analyzed for NO metabolites and markers of oxidative stress. RESULTS: FMD was significantly depressed after the prolonged occlusion compared to baseline, with a significant reduction 15-min post-occlusion (6.6 ± 0.7 to 2.9 ± 0.4%, p < 0.001); FMD remained depressed after 30 min (4.1 ± 0.6%, p = 0.001), but was not significantly different to baseline after 45-min recovery (5.4 ± 0.7%, p = 0.079). Plasma nitrate (main time effect: p = 0.015) and nitrite (main time effect: p = 0.034) concentrations were significantly reduced after prolonged occlusion. Plasma catalase activity was significantly elevated at 4- (p = 0.016) and 45-min (p = 0.001) post-occlusion, but plasma peroxiredoxin 2 and protein carbonyl content did not change. CONCLUSIONS: Prolonged forearm occlusion resulted in acute impairment of endothelium-dependent vasodilatation of the brachial artery for at least 30 min after reperfusion. We demonstrate that this vascular dysfunction is associated with oxidative stress and reduced NO bioavailability following reperfusion.


Asunto(s)
Antebrazo/irrigación sanguínea , Isquemia/fisiopatología , Óxido Nítrico/sangre , Sobrepeso/fisiopatología , Vasodilatación , Endotelio Vascular/fisiología , Humanos , Isquemia/sangre , Isquemia/complicaciones , Masculino , Persona de Mediana Edad , Sobrepeso/sangre , Sobrepeso/complicaciones
6.
J Sports Sci ; 36(2): 149-155, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28282751

RESUMEN

The purpose of this study was to assess the acute effect of high-intensity interval exercise (HIIE) and moderate-intensity exercise (MIE) on glucose tolerance, insulin sensitivity and fat oxidation in young boys. Eleven boys (8.8 ± 0.8 y) completed three conditions: 1) HIIE; 2) work-matched MIE; and 3) rest (CON) followed by an oral glucose tolerance test (OGTT) to determine glucose tolerance and insulin sensitivity (Cederholm index). Fat oxidation was measured following the OGTT using indirect calorimetry. There was no effect for condition on plasma [glucose] and [insulin] area under the curve (AUC) responses following the OGTT (P > 0.09). However, there was a "trend" for a condition effect for insulin sensitivity with a small increase after HIIE (P = 0.04, ES = 0.28, 9.7%) and MIE (P = 0.07, ES = 0.21, 6.5%) compared to CON. There was an increase in fat oxidation AUC following HIIE (P = 0.008, ES = 0.79, 38.9%) compared to CON, but with no differences between MIE and CON and HIIE and MIE (P > 0.13). In conclusion, 7- to 10-year-old boys may have limited scope to improve insulin sensitivity and glucose tolerance after a single bout of HIIE and MIE. However, fat oxidation is augmented after HIIE but not MIE.


Asunto(s)
Glucemia/metabolismo , Ejercicio Físico/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Resistencia a la Insulina/fisiología , Insulina/sangre , Área Bajo la Curva , Calorimetría Indirecta , Niño , Estudios Cruzados , Metabolismo Energético , Prueba de Tolerancia a la Glucosa , Humanos , Metabolismo de los Lípidos , Masculino , Oxidación-Reducción , Periodo Posprandial/fisiología
7.
Int J Sports Med ; 38(13): 967-974, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28965340

RESUMEN

This study examined the time course of adaptions in insulin sensitivity (IS) in adolescent boys after acute high-intensity interval exercise (HIIE) and moderate-intensity exercise (MIE). Eight boys (15.1±0.4 y) completed three 3-day experimental trials in a randomised order: 1) 8×1 min cycling at 90% peak power with 75 s recovery (HIIE); 2) cycling at 90% of gas exchange threshold for a duration to match work during HIIE (MIE); and 3) rest (CON). Plasma [glucose] and [insulin] were measured before (PRE-Ex), 24 and 48 h post (24 h-POST, 48 h-POST) in a fasted state, and 40 min (POST-Ex) and 24 h (24 h-POST) post in response to an oral glucose tolerance test (OGTT). IS was estimated using the Cederholm (OGTT) and HOMA (fasted) indices. There was no change to HOMA at 24 h or 48 h-POST (all P>0.05). IS from the OGTT was higher POST-EX for HIIE compared to CON (17.4%, P=0.010, ES=1.06), and a non-significant increase in IS after MIE compared to CON (9.0%, P=0.14, ES=0.59). At 24 h-POST, IS was higher following both HIIE and MIE compared to CON (HIIE: P=0.019, 13.2%, ES=0.88; MIE: 9.7%, P=0.024, ES=0.65). In conclusion, improvements to IS after a single bout of HIIE and MIE persist up to 24 h after exercise when assessed by OGTT.


Asunto(s)
Ejercicio Físico/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Resistencia a la Insulina/fisiología , Adolescente , Glucemia/metabolismo , Estudios Cruzados , Ingestión de Energía/fisiología , Ayuno , Prueba de Tolerancia a la Glucosa , Homeostasis/fisiología , Humanos , Insulina/sangre , Masculino , Factores de Tiempo
8.
Am J Physiol Heart Circ Physiol ; 309(6): H1039-47, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26254333

RESUMEN

High-intensity interval training (HIIT) improves traditional cardiovascular disease (CVD) risk factors in adolescents, but no study has identified the influence of HIIT on endothelial and autonomic function in this group. Thirteen 13- to 14-yr-old adolescents (6 girls) completed six HIIT sessions over 2 wk. Each training session consisted of eight to ten 1-min repetitions of cycling at 90% peak power interspersed with 75 s of unloaded cycling. Traditional (triglycerides, cholesterol, glucose, insulin, and blood pressure) and novel [flow-mediated dilation (FMD), heart rate variability (HRV)] CVD risk factors were assessed in a fasted and postprandial state before (PRE), 1 day after (POST-1D), and 3 days after (POST-3D) training. Aerobic fitness was determined PRE and POST-3D. Two weeks of HIIT had no effect on aerobic fitness or traditional CVD risk factors determined in the fasted or postprandial state (P > 0.15). Compared with PRE, fasted FMD was improved POST-1D [P = 0.003, effect size (ES) = 0.70] but not POST-3D (P = 0.32, ES = 0.22). Fasted FMD was greater POST-1D compared with POST-3D (P = 0.04, ES = 0.48). Compared with PRE, postprandial FMD was greater POST-1D (P < 0.001, ES = 1.01) and POST-3D (P = 0.01, ES = 0.60). Fasted HRV was greater POST-1D (P = 0.001, ES = 0.71) and POST-3D (P = 0.02, ES = 0.44). The test meal lowered HRV in all laboratory visits (P < 0.001, ES = 0.59), but there were no differences in postprandial HRV between visits (P > 0.32 for all). Two weeks of HIIT enhanced endothelial function and HRV without improvements in traditional CVD risk factors. However, most of this favorable adaptation was lost POST-3D, suggesting that regularly performing high-intensity exercise is needed to maintain these benefits.


Asunto(s)
Glucemia/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Colesterol/metabolismo , Endotelio Vascular/fisiopatología , Ejercicio Físico , Conducta de Reducción del Riesgo , Triglicéridos/metabolismo , Adolescente , Sistema Nervioso Autónomo/fisiopatología , Ciclismo , Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/metabolismo , Estudios de Cohortes , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Insulina/metabolismo , Masculino , Consumo de Oxígeno/fisiología , Aptitud Física/fisiología , Estudios Prospectivos , Factores de Riesgo , Vasodilatación/fisiología
9.
Eur J Appl Physiol ; 115(5): 927-36, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25501677

RESUMEN

PURPOSE: The effect of exercise intensity and sex on postprandial risk factors for cardiovascular disease in adolescents is unknown. We examined the effect of a single bout of work-matched high-intensity interval exercise (HIIE) and moderate-intensity exercise (MIE) on postprandial triacylglycerol (TAG) and systolic blood pressure (SBP) in adolescents. METHOD: Twenty adolescents (10 male, 14.3 ± 0.3 years) completed three 1-day trials: (1) rest (CON); (2) 8 × 1 min cycling at 90 % peak power with 75 s recovery (HIIE); (3) cycling at 90 % of the gas exchange threshold (MIE), 1 h before consuming a high-fat milkshake (1.50 g fat and 80 kJ kg(-1)). Postprandial TAG, SBP and fat oxidation were assessed over 4 h RESULTS: Compared to CON, the incremental area under the curve for TAG (IAUC-TAG) was not significantly lowered in HIIE [P = 0.22, effect size (ES) = 0.24] or MIE (P = 0.65, ES = 0.04) for boys. For girls, HIIE and MIE lowered IAUC-TAG by 34 % (P = 0.02, ES = 0.58) and 38 % (P = 0.09, ES = 0.73), respectively, with no difference between HIIE and MIE (P = 0.74, ES = 0.14). Changes in TAG were not related to energy expenditure during exercise or postprandial fat oxidation. Postprandial SBP (total-AUC pooled for both sexes) was lower in HIIE compared to CON (P = 0.01, ES = 0.68) and MIE (P = 0.02, ES = 0.60), with no difference between MIE and CON (P = 0.45, ES = 0.14). CONCLUSION: A single bout of HIIE and MIE, performed 1 h before an HFM, can meaningfully attenuate IAUC-TAG in girls but not boys. Additionally, HIIE, but not MIE, may lower postprandial SBP in normotensive adolescents.


Asunto(s)
Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/etiología , Ejercicio Físico/fisiología , Periodo Posprandial/fisiología , Triglicéridos/sangre , Adolescente , Enfermedades Cardiovasculares/fisiopatología , Metabolismo Energético/fisiología , Femenino , Humanos , Masculino , Descanso/fisiología , Factores de Riesgo , Factores Sexuales
10.
Brain Behav Immun ; 39: 211-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24120932

RESUMEN

The present study examined whether a high protein diet prevents the impaired leukocyte redistribution in response to acute exercise caused by a large volume of high-intensity exercise training. Eight cyclists (VO2max: 64.2±6.5mLkg(-1)min(-1)) undertook two separate weeks of high-intensity training while consuming either a high protein diet (3gkg(-1)proteinBM(-1)day(-1)) or an energy and carbohydrate-matched control diet (1.5gkg(-1)proteinBM(-1)day(-1)). High-intensity training weeks were preceded by a week of normal-intensity training under the control diet. Leukocyte and lymphocyte sub-population responses to acute exercise were determined at the end of each training week. Self-reported symptoms of upper-respiratory tract infections (URTI) were monitored daily by questionnaire. Undertaking high-intensity training with a high protein diet restored leukocyte kinetics to similar levels observed during normal-intensity training: CD8(+) TL mobilization (normal-intensity: 29,319±13,130cells/µL×∼165min vs. high-intensity with protein: 26,031±17,474cells/µL×∼165min, P>0.05), CD8(+) TL egress (normal-intensity: 624±264cells/µL vs. high-intensity with protein: 597±478cells/µL, P>0.05). This pattern was driven by effector-memory populations mobilizing (normal-intensity: 6,145±6,227cells/µL×∼165min vs. high-intensity with protein: 6,783±8,203cells/µL×∼165min, P>0.05) and extravastating from blood (normal-intensity: 147±129cells/µL vs. high-intensity with protein: 165±192cells/µL, P>0.05). High-intensity training while consuming a high protein diet was associated with fewer symptoms of URTI compared to performing high-intensity training with a normal diet (P<0.05). To conclude, a high protein diet might reduce the incidence of URTI in athletes potentially mediated by preventing training-induced impairments in immune-surveillance.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Proteínas en la Dieta/uso terapéutico , Ejercicio Físico/fisiología , Leucocitos/efectos de los fármacos , Infecciones del Sistema Respiratorio/prevención & control , Adulto , Atletas , Movimiento Celular/efectos de los fármacos , Estudios Cruzados , Humanos , Incidencia , Leucocitos/metabolismo , Masculino , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/inmunología , Adulto Joven
11.
Eur J Appl Physiol ; 113(7): 1673-84, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23370859

RESUMEN

Recent studies have suggested that dietary inorganic nitrate (NO3(-)) supplementation may improve muscle efficiency and endurance exercise tolerance but possible effects during team sport-specific intense intermittent exercise have not been examined. We hypothesized that NO3(-) supplementation would enhance high-intensity intermittent exercise performance. Fourteen male recreational team-sport players were assigned in a double-blind, randomized, crossover design to consume 490 mL of concentrated, nitrate-rich beetroot juice (BR) and nitrate-depleted placebo juice (PL) over ~30 h preceding the completion of a Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1). Resting plasma nitrite concentration ([NO2(-)]) was ~400% greater in BR compared to PL. Plasma [NO2(-)] declined by 20% in PL (P < 0.05) and by 54 % in BR (P < 0.05) from pre-exercise to end-exercise. Performance in the Yo-Yo IR1 was 4.2% greater (P < 0.05) with BR (1,704 ± 304 m) compared to PL (1,636 ± 288 m). Blood [lactate] was not different between BR and PL, but the mean blood [glucose] was lower (3.8 ± 0.8 vs. 4.2 ± 1.1 mM, P < 0.05) and the rise in plasma [K(+)] tended to be reduced in BR compared to PL (P = 0.08). These findings suggest that NO3(-) supplementation may promote NO production via the nitrate-nitrite-NO pathway and enhance Yo-Yo IR1 test performance, perhaps by facilitating greater muscle glucose uptake or by better maintaining muscle excitability. Dietary NO3(-) supplementation improves performance during intense intermittent exercise and may be a useful ergogenic aid for team sports players.


Asunto(s)
Rendimiento Atlético , Suplementos Dietéticos , Ejercicio Físico , Nitratos/administración & dosificación , Beta vulgaris/química , Bebidas , Glucemia , Método Doble Ciego , Humanos , Masculino , Nitratos/sangre , Nitritos/sangre , Potasio/sangre , Adulto Joven
12.
J Sports Sci ; 31(13): 1468-74, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23829604

RESUMEN

We investigated the musculoskeletal health profile of elite female football players (ET) in comparison to untrained (UT) young women subjected to 16 weeks of football training (2 × 1 h per week). DXA scans, blood sampling, sprint testing and Flamingo postural balance testing were carried out for 27 Danish national team players and 28 untrained women, with eight women being tested after training. At baseline total BMD and BMC were 13% (1.305 ± 0.050 versus 1.159 ± 0.056 g · cm(-2)) and 23% (3047 ± 235 versus 2477 ± 526 g) higher (P <0.001) and leg BMD and BMC were 24 and 28% higher (P <0.01) in ET than in UT. Resting plasma osteocalcin was 45% higher in ET than in UT (28.8 ± 10.9 versus 19.9 ± 9.9 µg · L(-1), P <0.05). Total lean body mass was 14% higher (50.4 ± 3.3 versus 44.3 ± 4.0 kg) in ET compared with UT, with no difference in total body mass. The number of Flamingo test falls was 56-63% less (P <0.01) and 30 m sprinting speed was 31% faster (P <0.001) in ET than UT. After 16 weeks of football training for UT, lean body mass increased by 1.4 ± 0.5 kg and the number of left leg falls decreased by 29% (P <0.05). No significant changes occurred in BMD or BMC, but plasma osteocalcin increased (P <0.05) by 37%. In summary, elite women footballers have an impressive musculoskeletal health profile compared with untrained controls, but short-term football training seems to reduce the risk of falls and increase bone formation.


Asunto(s)
Composición Corporal , Densidad Ósea , Osteocalcina/sangre , Acondicionamiento Físico Humano/fisiología , Aptitud Física , Equilibrio Postural , Fútbol/fisiología , Adulto , Compartimentos de Líquidos Corporales/metabolismo , Peso Corporal , Dinamarca , Femenino , Fútbol Americano , Humanos , Pierna , Fuerza Muscular , Músculo Esquelético , Carrera , Adulto Joven
13.
J Sports Sci ; 31(13): 1432-40, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23829576

RESUMEN

We examined effects of a 3-month football training programme in overweight children using comprehensive echocardiography and peripheral arterial tonometry. Twenty preadolescent overweight children (17 boys, 3 girls aged 8-12 yrs; body mass index [BMI] ≥ 85(th) percentile) participated in a structured 3-month football training programme, consisting of 4 weekly 60-90 min sessions with mean heart rate (HR) > 80% of HRmax (football group, FG). A parallel control group (CG) included 11 children (7 boys, 4 girls) of equivalent age from an obesity clinic. After 3 months, systolic blood pressure was unchanged in FG, but had increased in CG (112 [s 6] vs. 122 [10] mmHg, P = 0.02). FG demonstrated increased left ventricular (LV) posterior wall diameter (0.60 [0.07] vs. 0.68 [0.10] cm, P < 0.001) and an improved right ventricular systolic function determined by tricuspid annular plane systolic excursion (TAPSE, 2.01 [0.29] vs. 2.27 [0.28] cm, P = 0.003). Measures of LV systolic function showed only discrete alterations and two-dimensional (2D) global strain was not changed. After 3 months, global isovolumetric relaxation time (IVRTglobal) had increased in FG (64.0 [7.5] vs. 73.9 [9.4] ms, P < 0.001) while other examined LV diastolic function variables were not altered. No echocardiographic changes were observed in CG. Between-group differences in pre-post delta values were observed for systolic blood pressure, TAPSE, and IVRTglobal (P = 0.02-0.03). We conclude that short-term football training may have positive structural and functional effects on the cardiovascular system in overweight preadolescent children.


Asunto(s)
Índice de Masa Corporal , Enfermedades Cardiovasculares/prevención & control , Obesidad/terapia , Acondicionamiento Físico Humano/fisiología , Fútbol/fisiología , Presión Sanguínea , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Niño , Ecocardiografía/métodos , Femenino , Fútbol Americano , Frecuencia Cardíaca , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Obesidad/complicaciones , Obesidad/patología , Obesidad/fisiopatología , Acondicionamiento Físico Humano/métodos , Proyectos Piloto , Válvula Tricúspide
14.
Med Sci Sports Exerc ; 54(4): 609-621, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772901

RESUMEN

INTRODUCTION: Montmorency cherry concentrate (MCC) supplementation enhances functional recovery from exercise, potentially due to antioxidant and anti-inflammatory effects. However, to date, supporting empirical evidence for these mechanistic hypotheses is reliant on indirect blood biomarkers. This study is the first to investigate functional recovery from exercise alongside molecular changes within the exercised muscle after MCC supplementation. METHODS: Ten participants completed two maximal unilateral eccentric knee extension trials after MCC or placebo (PLA) supplementation for 7 d before and 48 h after exercise. Knee extension maximum voluntary contractions, maximal isokinetic contractions, single leg jumps, and soreness measures were assessed before, immediately, 24 h, and 48 h after exercise. Venous blood and vastus lateralis muscle samples were collected at each time point. Plasma concentrations of interleukin-6, tumor necrosis factor alpha, C-reactive protein, creatine kinase, and phenolic acids were quantified. Intramuscular mRNA expressions of superoxide dismutase 1 (SOD1), SOD3, glutathione peroxidase 1 (GPX1), GPX3, GPX4, GPX7, catalase, and nuclear factor erythroid 2-related factor 2 and relative intramuscular protein expressions of SOD1, catalase, and GPX3 were quantified. RESULTS: MCC supplementation enhanced the recovery of normalized maximum voluntary contraction 1-s average compared with PLA (postexercise PLA, 59.5% ± 18.0%, vs MCC, 76.5% ± 13.9%; 24 h PLA, 69.8% ± 15.9%, vs MCC, 80.5% ± 15.3%; supplementation effect P = 0.024). MCC supplementation increased plasma hydroxybenzoic, hippuric, and vanillic acid concentrations (supplementation effect P = 0.028, P = 0.002, P = 0.003); SOD3, GPX3, GPX4, GPX7 (supplement effect P < 0.05), and GPX1 (interaction effect P = 0.017) gene expression; and GPX3 protein expression (supplementation effect P = 0.004) versus PLA. There were no significant differences between conditions for other outcome measures. CONCLUSIONS: MCC supplementation conserved isometric muscle strength and upregulated antioxidant gene and protein expression in parallel with increased phenolic acid concentrations.


Asunto(s)
Prunus avium , Antioxidantes/metabolismo , Catalasa , Suplementos Dietéticos , Método Doble Ciego , Glutatión Peroxidasa/farmacología , Humanos , Músculo Esquelético/fisiología , Mialgia , Poliésteres/farmacología , Prunus avium/metabolismo , Superóxido Dismutasa-1/farmacología
15.
J Physiol ; 589(Pt 16): 4011-25, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21746787

RESUMEN

The aim of the present study was to determine mitochondrial and myofibrillar muscle protein synthesis (MPS) when carbohydrate (CHO) or carbohydrate plus protein (C+P) beverages were ingested following prolonged cycling exercise. The intracellular mechanisms thought to regulate MPS were also investigated. In a single-blind, cross-over study, 10 trained cyclists (age 29 ± 6 years, VO2max 66.5 ± 5.1 ml kg(−1) min(−1)) completed two trials in a randomized order. Subjects cycled for 90 min at 77 ± 1% VO2max before ingesting a CHO (25 g of carbohydrate) or C+P (25 g carbohydrate + 10 g whey protein) beverage immediately and 30 min post-exercise. A primed constant infusion of L-[ring-(13)C6]phenylalanine began 1.5 h prior to exercise and continued until 4 h post-exercise. Muscle biopsy samples were obtained to determine myofibrillar and mitochondrial MPS and the phosphorylation of intracellular signalling proteins. Arterialized blood samples were obtained throughout the protocol. Plasma amino acid and urea concentrations increased following ingestion of C+P only. Serum insulin concentration increased more for C+P than CHO. Myofibrillar MPS was ∼35% greater for C+P compared with CHO (0.087 ± 0.007 and 0.057 ± 0.006% h(−1), respectively; P = 0.025). Mitochondrial MPS rates were similar for C+P and CHO (0.082 ± 0.011 and 0.086 ± 0.018% h(−1), respectively). mTOR(Ser2448) phosphorylation was greater for C+P compared with CHO at 4 h post-exercise (P < 0.05). p70S6K(Thr389) phosphorylation increased at 4 h post-exercise for C+P (P < 0.05), whilst eEF2(Thr56) phosphorylation increased by ∼40% at 4 h post-exercise for CHO only (P < 0.01). The present study demonstrates that the ingestion of protein in addition to carbohydrate stimulates an increase in myofibrillar, but not mitochondrial, MPS following prolonged cycling. These data indicate that the increase in myofibrillar MPS for C+P could, potentially, be mediated through p70S6K, downstream of mTOR, which in turn may suppress the rise in eEF2 on translation elongation.


Asunto(s)
Carbohidratos de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Proteínas Mitocondriales/biosíntesis , Proteínas Musculares/biosíntesis , Miofibrillas/metabolismo , Resistencia Física/fisiología , Adulto , Bebidas , Estudios Cruzados , Humanos , Masculino , Proteínas Musculares/fisiología , Miofibrillas/fisiología , Método Simple Ciego , Adulto Joven
16.
Nutrients ; 13(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34959836

RESUMEN

Shatavari has long been used as an Ayurvedic herb for women's health, but empirical evidence for its effectiveness has been lacking. Shatavari contains phytoestrogenic compounds that bind to the estradiol receptor. Postmenopausal estradiol deficiency contributes to sarcopenia and osteoporosis. In a randomised double-blind trial, 20 postmenopausal women (68.5 ± 6 years) ingested either placebo (N = 10) or shatavari (N = 10; 1000 mg/d, equivalent to 26,500 mg/d fresh weight shatavari) for 6 weeks. Handgrip and knee extensor strength were measured at baseline and at 6 weeks. Vastus lateralis (VL) biopsy samples were obtained. Data are presented as difference scores (Week 6-baseline, median ± interquartile range). Handgrip (but not knee extensor) strength was improved by shatavari supplementation (shatavari +0.7 ± 1.1 kg, placebo -0.4 ± 1.3 kg; p = 0.04). Myosin regulatory light chain phosphorylation, a known marker of improved myosin contractile function, was increased in VL following shatavari supplementation (immunoblotting; placebo -0.08 ± 0.5 a.u., shatavari +0.3 ± 1 arbitrary units (a.u.); p = 0.03). Shatavari increased the phosphorylation of Aktser473 (Aktser473 (placebo -0.6 ± 0.6 a.u., shatavari +0.2 ± 1.3 a.u.; p = 0.03) in VL. Shatavari supplementation did not alter plasma markers of bone turnover (P1NP, ß-CTX) and stimulation of human osteoblasts with pooled sera (N = 8 per condition) from placebo and shatavari supplementation conditions did not alter cytokine or metabolic markers of osteoblast activity. Shatavari may improve muscle function and contractility via myosin conformational change and further investigation of its utility in conserving and enhancing musculoskeletal function, in larger and more diverse cohorts, is warranted.


Asunto(s)
Asparagus , Suplementos Dietéticos , Fuerza de la Mano , Fosforilación/efectos de los fármacos , Posmenopausia/efectos de los fármacos , Anciano , Remodelación Ósea/efectos de los fármacos , Método Doble Ciego , Femenino , Humanos , Medicina Ayurvédica , Persona de Mediana Edad , Cadenas Ligeras de Miosina/efectos de los fármacos , Posmenopausia/fisiología , Músculo Cuádriceps/metabolismo
17.
Med Sci Sports Exerc ; 52(4): 944-954, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31688656

RESUMEN

PURPOSE: Musculoskeletal injuries necessitate periods of disuse (i.e., limb immobilization) during which rapid skeletal muscle atrophy occurs. The relative susceptibility of different muscles of the thigh to disuse atrophy remains uninvestigated. We assessed muscle disuse atrophy of individual thigh muscles throughout 1 wk of unilateral knee immobilization. METHODS: Thirteen healthy, young (20.2 ± 0.6 yr) men underwent 7 d of unilateral leg immobilization via knee bracing. Magnetic resonance imaging scans were performed bilaterally prior to, and following 2 and 7 d of immobilization to determine the volume and anatomical cross-sectional area of the individual muscle groups of the upper legs. RESULTS: In contrast to the control leg, total thigh muscle volume had decreased by 1.7% ± 0.3% (P < 0.01) and 5.5% ± 0.6% (P < 0.001) in the immobilized leg after 2 and 7 d of disuse, respectively. Muscle loss was significantly greater in the Musculus quadriceps (day 2; 1.7% ± 0.3% (P < 0.05) and day 7; 6.7% ± 0.6%) when compared with the Musculus hamstrings (day 2; 1.4% ± 0.2% (P < 0.01) and day 7; 3.5% ± 0.3%) after 7 d of disuse (P < 0.001). Individual muscles of the thigh exhibited different atrophy rates with the Musculus vastus lateralis anatomical cross-sectional area showing the greater (2.6% ± 0.4% and 7.2% ± 0.8%), and the Musculus gracilis the lesser (1.1% ± 0.7% and 2.3% ± 1.0%) decline following 2 and 7 d of immobilization, respectively (P < 0.01). CONCLUSIONS: Thigh muscle disuse atrophy occurs rapidly and is already evident within 2 d of leg immobilization and progresses at a similar rate over the next 5 d (~0.8% muscle loss per day). M. quadriceps muscle shows more atrophy when compared with the M. hamstrings.


Asunto(s)
Músculos Isquiosurales/patología , Inmovilización/efectos adversos , Atrofia Muscular/etiología , Atrofia Muscular/patología , Músculo Cuádriceps/patología , Tirantes , Prueba de Esfuerzo , Músculos Isquiosurales/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Fuerza Muscular , Atrofia Muscular/diagnóstico por imagen , Músculo Cuádriceps/diagnóstico por imagen , Factores de Tiempo , Adulto Joven
18.
Am J Clin Nutr ; 112(2): 318-333, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32438401

RESUMEN

BACKGROUND: Mycoprotein is a fungal-derived sustainable protein-rich food source, and its ingestion results in systemic amino acid and leucine concentrations similar to that following milk protein ingestion. OBJECTIVE: We assessed the mixed skeletal muscle protein synthetic response to the ingestion of a single bolus of mycoprotein compared with a leucine-matched bolus of milk protein, in rested and exercised muscle of resistance-trained young men. METHODS: Twenty resistance-trained healthy young males (age: 22 ± 1 y, body mass: 82 ± 2 kg, BMI: 25 ± 1 kg·m-2) took part in a randomized, double-blind, parallel-group study. Participants received primed, continuous infusions of L-[ring-2H5]phenylalanine and ingested either 31 g (26.2 g protein: 2.5 g leucine) milk protein (MILK) or 70 g (31.5 g protein: 2.5 g leucine) mycoprotein (MYCO) following a bout of unilateral resistance-type exercise (contralateral leg acting as resting control). Blood and m. vastus lateralis muscle samples were collected before exercise and protein ingestion, and following a 4-h postprandial period to assess mixed muscle fractional protein synthetic rates (FSRs) and myocellular signaling in response to the protein beverages in resting and exercised muscle. RESULTS: Mixed muscle FSRs increased following MILK ingestion (from 0.036 ± 0.008 to 0.052 ± 0.006%·h-1 in rested, and 0.035 ± 0.008 to 0.056 ± 0.005%·h-1 in exercised muscle; P <0.01) but to a greater extent following MYCO ingestion (from 0.025 ± 0.006 to 0.057 ± 0.004%·h-1 in rested, and 0.024 ± 0.007 to 0.072 ± 0.005%·h-1 in exercised muscle; P <0.0001) (treatment × time interaction effect; P <0.05). Postprandial FSRs trended to be greater in MYCO compared with MILK (0.065 ± 0.004 compared with 0.054 ± 0.004%·h-1, respectively; P = 0.093) and the postprandial rise in FSRs was greater in MYCO compared with MILK (Delta 0.040 ± 0.006 compared with Delta 0.018 ± 0.005%·h-1, respectively; P <0.01). CONCLUSIONS: The ingestion of a single bolus of mycoprotein stimulates resting and postexercise muscle protein synthesis rates, and to a greater extent than a leucine-matched bolus of milk protein, in resistance-trained young men. This trial was registered at clinicaltrials.gov as 660065600.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas de la Leche/metabolismo , Proteínas Musculares/biosíntesis , Adulto , Aminoácidos/metabolismo , Método Doble Ciego , Ejercicio Físico , Proteínas Fúngicas/química , Humanos , Masculino , Proteínas de la Leche/química , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Adulto Joven
19.
Artículo en Inglés | MEDLINE | ID: mdl-31827806

RESUMEN

BACKGROUND: Current evidence of metabolic health benefits of high-intensity interval training (HIIT) are limited to longer training periods or conducted in overweight youth. This study assessed 1) fasting and postprandial insulin and glucose before and after 2 weeks of HIIT in healthy adolescent boys, and 2) the relationship between pre intervention health outcomes and the effects of the HIIT intervention. METHODS: Seven healthy boys (age:14.3 ± 0.3 y, BMI: 21.6 ± 2.6, 3 participants classified as overweight) completed 6 sessions of HIIT over 2 weeks. Insulin resistance (IR) and blood glucose and insulin responses to a Mixed Meal Tolerance Test (MMTT) were assessed before (PRE), 20 h and 70 h after (POST) the final HIIT session. RESULTS: Two weeks of HIIT had no effect on fasting plasma glucose, insulin or IR at 20 h and 70 h POST HIIT, nor insulin and glucose response to MMTT (all P > 0.05). There was a strong negative correlation between PRE training IR and change in IR after HIIT (r = - 0.96, P < 0.05). CONCLUSION: Two weeks of HIIT did not elicit improvements to fasting or postprandial glucose or insulin health outcomes in a group of adolescent boys. However the negative correlation between PRE IR and improvements after HIIT suggest that interventions of this type may be effective in adolescents with raised baseline IR.

20.
J Appl Physiol (1985) ; 126(1): 246-254, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496705

RESUMEN

Flavonoid supplementation improves brachial artery flow-mediated dilation (FMD), but it is not known whether flavonoids protect against vascular dysfunction induced by ischemia-reperfusion (IR) injury and associated respiratory burst. In a randomized, double-blind, placebo-controlled, crossover study, we investigated whether 4 wk supplementation with freeze-dried Montmorency cherry (MC) attenuated suppression of FMD after IR induced by prolonged forearm occlusion. Twelve physically inactive overweight, middle-aged men (52.8 ± 5.8 yr, BMI: 28.1 ± 5.3 kg/m2) consumed MC (235 mg/day anthocyanins) or placebo capsules for 4 wk, with supplementation blocks separated by 4 wk washout. Before and after each supplementation block, FMD responses and plasma nitrate and nitrite ([ NO2- ]) concentrations were measured at baseline and 15, 30, and 45 min after prolonged (20 min) forearm occlusion. FMD response was significantly depressed by the prolonged occlusion ( P < 0.001). After a 45-min reperfusion, FMD was restored to baseline levels after MC (ΔFMD presupplementation: -30.5 ± 8.4%, postsupplementation: -0.6 ± 9.5%) but not placebo supplementation (ΔFMD presupplementation: -11.6 ± 10.6, postsupplementation: -25.4 ± 4.0%; condition × supplement interaction: P = 0.038). Plasma [ NO2- ] decreased after prolonged occlusion but recovered faster after MC compared with placebo (Δ45 min to baseline; MC: presupplementation: -15.3 ± 9.6, postsupplementation: -6.2 ± 8.1; Placebo: presupplementation: -16.3 ± 5.9, postsupplementation: -27.7 ± 11.1 nmol/l; condition × supplement × time interaction: P = 0.033). Plasma peroxiredoxin concentration ([Prx2]) was significantly higher after MC (presupplementation: 22.8 ± 1.4, postsupplementation: 28.0 ± 2.4 ng/ml, P = 0.029) but not after placebo supplementation (presupplementation: 22.1 ± 2.2, postsupplementation: 23.7 ± 1.5 ng/ml). In conclusion, 4 wk MC supplementation enhanced recovery of endothelium-dependent vasodilatation after IR, in parallel with faster recovery of plasma [ NO2- ], suggesting NO dependency. These protective effects seem to be related to increased plasma [Prx2], presumably conferring protection against the respiratory burst during reperfusion. NEW & NOTEWORTHY This is the first study to demonstrate that 4 wk of Montmorency cherry powder supplementation exerted protective effects on endothelium-dependent vasodilation after transient ischemia-reperfusion injury in overweight, physically inactive, nonmedicated, hypertensive middle-aged men. These effects seem to be due to increased nitric oxide availability, as evidenced by higher plasma nitrite concentration and peak arterial diameter during the flow-mediated dilation measurement. This may be a consequence of increased concentration of peroxiredoxin and other antioxidant systems and, hence, reduced reactive oxygen species exposure.


Asunto(s)
Suplementos Dietéticos , Endotelio Vascular/fisiopatología , Antebrazo/irrigación sanguínea , Prunus avium , Daño por Reperfusión/prevención & control , Arteria Braquial/fisiopatología , Estudios Cruzados , Método Doble Ciego , Humanos , Hipertensión/complicaciones , Masculino , Persona de Mediana Edad , Sobrepeso/complicaciones , Fitoterapia , Daño por Reperfusión/sangre , Daño por Reperfusión/fisiopatología , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA