Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 32(5): 1197-1210, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36478482

RESUMEN

Apicomplexans are a protozoan phylum of obligate parasites which may be highly virulent during acute infections, but may also persist as chronic infections which appear to have little fitness cost. Babesia microti is an apicomplexan haemoparasite that, in immunocompromised individuals, can cause severe, potentially fatal disease. However, in its natural host, wild field voles (Microtus agrestis), it exhibits chronic infections that have no detectable impact on survival or female fecundity. How is damage minimized, and what is the impact on the host's immune state and health? We examine the differences in immune state (here represented by expression of immune-related genes in multiple tissues) associated with several common chronic infections in a population of wild field voles. While some infections show little impact on immune state, we find strong associations between immune state and B. microti. These include indications of clearance of infected erythrocytes (increased macrophage activity in the spleen) and activity likely associated with minimizing damage from the infection (anti-inflammatory and antioxidant activity in the blood). By analysing gene expression from the same individuals at multiple time points, we show that the observed changes are a response to infection, rather than a risk factor. Our results point towards continual investment to minimize the damage caused by the infection. Thus, we shed light on how wild animals can tolerate some chronic infections, but emphasize that this tolerance does not come without a cost.


Asunto(s)
Babesiosis , Animales , Femenino , Babesiosis/epidemiología , Babesiosis/parasitología , Roedores , Infección Persistente , Arvicolinae , Inmunomodulación
2.
Mol Ecol ; 32(13): 3471-3482, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37009948

RESUMEN

Individuals differ in the nature of the immune responses they produce, affecting disease susceptibility and ultimately health and fitness. These differences have been hypothesized to have an origin in events experienced early in life that then affect trajectories of immune development and responsiveness. Here, we investigate how early-life immune expression profiles influence life history outcomes in a natural population of field voles, Microtus agrestis, in which we are able to monitor variation between and within individuals through time by repeat sampling of individually marked animals. We analysed the co-expression of 20 immune genes in early life to create a correlation network consisting of three main clusters, one of which (containing Gata3, Il10 and Il17) was associated with later-life reproductive success and susceptibility to chronic bacterial (Bartonella) infection. More detailed analyses supported associations between early-life expression of Il17 and reproductive success later in life, and of Il10 expression early in life and later infection with Bartonella. We also found significant association between an Il17 genotype and the early-life expression of Il10. Our results demonstrate that immune expression profiles can be manifested during early life with effects that persist through adulthood and that shape the variability among individuals in susceptibility to infection and fitness widely seen in natural populations.


Asunto(s)
Infecciones por Bartonella , Bartonella , Enfermedades de los Roedores , Animales , Interleucina-10/genética , Roedores , Genotipo , Arvicolinae/genética , Enfermedades de los Roedores/microbiología
3.
Glob Chang Biol ; 29(19): 5568-5581, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37548403

RESUMEN

The increasing frequency and cost of zoonotic disease emergence due to global change have led to calls for the primary surveillance of wildlife. This should be facilitated by the ready availability of remotely sensed environmental data, given the importance of the environment in determining infectious disease dynamics. However, there has been little evaluation of the temporal predictiveness of remotely sensed environmental data for infection reservoirs in vertebrate hosts due to a deficit of corresponding high-quality long-term infection datasets. Here we employ two unique decade-spanning datasets for assemblages of infectious agents, including zoonotic agents, in rodents in stable habitats. Such stable habitats are important, as they provide the baseline sets of pathogens for the interactions within degrading habitats that have been identified as hotspots for zoonotic emergence. We focus on the enhanced vegetation index (EVI), a measure of vegetation greening that equates to primary productivity, reasoning that this would modulate infectious agent populations via trophic cascades determining host population density or immunocompetence. We found that EVI, in analyses with data standardised by site, inversely predicted more than one-third of the variation in an index of infectious agent total abundance. Moreover, in bipartite host occupancy networks, weighted network statistics (connectance and modularity) were linked to total abundance and were also predicted by EVI. Infectious agent abundance and, perhaps, community structure are likely to influence infection risk and, in turn, the probability of transboundary emergence. Thus, the present results, which were consistent in disparate forest and desert systems, provide proof-of-principle that within-site fluctuations in satellite-derived greenness indices can furnish useful forecasting that could focus primary surveillance. In relation to the well-documented global greening trend of recent decades, the present results predict declining infection burden in wild vertebrates in stable habitats; but if greening trends were to be reversed, this might magnify the already upwards trend in zoonotic emergence.


Asunto(s)
Ecosistema , Roedores , Animales , Animales Salvajes , Bosques
4.
Thromb J ; 21(1): 104, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794418

RESUMEN

BACKGROUND: Fluorogenic thrombin generation (TG) is a global hemostasis assay that provides an overall representation of hemostasis potential. However, the accurate detection of thrombin activity in plasma may be affected by artifacts inherent to the assay-associated fluorogenic substrate. The significance of the fluorogenic artifacts or their corrections has not been studied in hemophilia treatment applications. METHODS: We sought to investigate TG in hemophilia plasma samples under typical and worst-case fluorogenic artifact conditions and assess the performance of artifact correction algorithms. Severe hemophilic plasma with or without added Factor VIII (FVIII) was evaluated using commercially available and in-house TG reagents, instruments, and software packages. The inner filter effect (IFE) was induced by spiking elevated amounts of fluorophore 7-amino-4-methylcoumarin (AMC) into plasma prior to the TG experiment. Substrate consumption was modeled by adding decreasing amounts of Z-Gly-Gly-Arg-AMC (ZGGR-AMC) to plasma or performing TG in antithrombin deficient plasma. RESULTS: All algorithms corrected the AMC-induced IFE and antithrombin-deficiency induced substrate consumption up to a certain level of either artifact (edge of failure) upon which TG results were not returned or overestimated. TG values in FVIII deficient (FVIII-DP) or supplemented plasma were affected similarly. Normalization of FVIII-DP resulted in a more accurate correction of substrate artifacts than algorithmic methods. CONCLUSIONS: Correction algorithms may be effective in situations of moderate fluorogenic substrate artifacts inherent to highly procoagulant samples, but correction may not be required under typical conditions for hemophilia treatment studies if TG parameters can be normalized to a reference plasma sample.

5.
J Anim Ecol ; 91(7): 1546-1553, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35694769

RESUMEN

Anthropogenic releases of radiation are of ongoing importance for environmental protection, but the radiation doses at which natural systems begin to show effects are controversial. More certainty is required in this area to achieve optimal regulation for radioactive substances. We recently carried out a large survey (268 sampled animals and 20 sites) of the association between environmental radiation exposures and small mammal gut-associated microbiomes (fungal and bacterial) in the Chornobyl Exclusion zone (CEZ). Using individual measurements of total absorbed dose rates and a study design and analyses that accounted for spatial non-independence, we found no, or only limited, association. Watts et al. have criticised our study: for not filtering candidate non-resident components prior to our fungal microbiome analyses, for our qualified speculations on the relative merits of faecal and gut samples, and for the design of our study which they felt lacked sufficient replication. The advantage of filtering non-resident-fungal taxa is not clear and it would not have changed the null (spatially adjusted) association we found between radioactive dose and mycobiome composition because the most discriminatory fungal taxa with regard to dose were non-resident taxa. We maintain that it was legitimate for us to make qualified discussion comments on the differences in results between our faecal and gut microbiome analyses and on the relative merits of these sample types. Most importantly, the criticism of our study design by Watts et al. and the designs and analysis of their recent studies in the CEZ show a misunderstanding of the true nature of independent replication in field studies. Recognising the importance of spatial non-independence is essential in the design and analysis of radioecological field surveys.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bacterias , Mamíferos
6.
PLoS Genet ; 15(1): e1007892, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30703081

RESUMEN

Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of ß (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of ß (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in ß (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of ß (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased ß (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ.


Asunto(s)
CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Candida albicans/genética , Proteínas Fúngicas/genética , Quinasas Quinasa Quinasa PAM/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Pared Celular/genética , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Guanosina Trifosfato/genética , Humanos , Lectinas Tipo C/genética , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , beta-Glucanos/química , beta-Glucanos/metabolismo , Proteína de Unión al GTP cdc42/genética
7.
Curr Issues Mol Biol ; 41: 381-468, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32938804

RESUMEN

The therapeutic promise of oncolytic viruses (OVs) rests on their ability to both selectively kill tumor cells and induce anti-tumor immunity. The potential of tumors to be recognized and eliminated by an effective anti-tumor immune response has been spurred on by the discovery that immune checkpoint inhibition can overcome tumor-specific cytotoxic T cell (CTL) exhaustion and provide durable responses in multiple tumor indications. OV-mediated tumor destruction is now recognized as a powerful means to assist in the development of anti-tumor immunity for two important reasons: (i) OVs, through the elicitation of an anti-viral response and the production of type I interferon, are potent stimulators of inflammation and can be armed with transgenes to further enhance anti-tumor immune responses; and (ii) lytic activity can promote the release of tumor-associated antigens (TAAs) and tumor neoantigens that function as in situ tumor-specific vaccines to elicit adaptive immunity. Oncolytic herpes simplex viruses (oHSVs) are among the most widely studied OVs for the treatment of solid malignancies, and Amgen's oHSV Imlygic® for the treatment of melanoma is the only OV approved in major markets. Here we describe important biological features of HSV that make it an attractive OV, clinical experience with HSV-based vectors, and strategies to increase applicability to cancer treatment.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Virus Oncolíticos/inmunología , Simplexvirus/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Adaptativa/inmunología , Animales , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos T Citotóxicos/inmunología
8.
Proc Biol Sci ; 288(1957): 20210552, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34403636

RESUMEN

Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate marked variation across host taxonomy in patterns of covariation between bacterial and fungal abundances. Host phylogeny drives differences in the overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in the mammalian gut microbiome. Sample type, tissue storage and DNA extraction method also affected bacterial and fungal community composition, and future studies would benefit from standardized approaches to sample processing. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions.


Asunto(s)
Microbiota , Micobioma , Animales , Bacterias/genética , Interacciones Microbiota-Huesped , Filogenia
9.
Cell Microbiol ; 22(8): e13210, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32329205

RESUMEN

Campylobacter jejuni is the leading cause of bacterial-derived gastroenteritis worldwide and can lead to several post-infectious inflammatory disorders. Despite the prevalence and health impacts of the bacterium, interactions between the host innate immune system and C. jejuni remain poorly understood. To expand on earlier work demonstrating that neutrophils traffic to the site of infection in an animal model of campylobacteriosis, we identified significant increases in several predominantly neutrophil-derived proteins in the faeces of C. jejuni-infected patients, including lipocalin-2, myeloperoxidase and neutrophil elastase. In addition to demonstrating that these proteins significantly inhibited C. jejuni growth, we determined they are released during formation of C. jejuni-induced neutrophil extracellular traps (NETs). Using quantitative and qualitative methods, we found that purified human neutrophils are activated by C. jejuni and exhibit signatures of NET generation, including presence of protein arginine deiminase-4, histone citrullination, myeloperoxidase, neutrophil elastase release and DNA extrusion. Production of NETs correlated with C. jejuni phagocytosis/endocytosis and invasion of neutrophils suggesting that host- and bacterial-mediated activities are responsible for NET induction. Further, NET-like structures were observed within intestinal tissue of C. jejuni-infected ferrets. Finally, induction of NETs significantly increased human colonocyte cytotoxicity, indicating that NET formation during C. jejuni infection may contribute to observed tissue pathology. These findings provide further understanding of C. jejuni-neutrophil interactions and inflammatory responses during campylobacteriosis.


Asunto(s)
Campylobacter jejuni/inmunología , Campylobacter jejuni/fisiología , Trampas Extracelulares/inmunología , Trampas Extracelulares/microbiología , Heces/química , Interacciones Microbiota-Huesped/inmunología , Neutrófilos/inmunología , Animales , Infecciones por Campylobacter/inmunología , Infecciones por Campylobacter/microbiología , Células Cultivadas , Colon/citología , Colon/microbiología , Colon/patología , Hurones , Humanos , Inflamación , Elastasa de Leucocito/metabolismo , Masculino , Neutrófilos/química , Neutrófilos/microbiología , Fagocitosis
10.
Soft Matter ; 17(7): 1881-1887, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33410451

RESUMEN

A method for predicting the solidification and stress of a digital light processing 3D print process is presented, using a voxel-based, multi-layer model to predict the degree of polymerization of the material at every stage during the print. Additive manufacturing offers extremely short development cycles, making predictive modelling of the complex chemical and mechanical interactions of photo-polymerization during part construction unappealing compared to iterative work-flows. Accurate predictions of stress, and the impact of the print parameters and post-print process upon stress, become increasingly important for 3D printing micro-scale electrical and mechanical systems as we design resonators and conductive layers. The process uses a simple method of printed cantilevers to calibrate the stress from various print processes such as propagation of the polymerization front and polymerization gradient. The model is found to have good predictive value and is capable of stress and solidification prediction from a computer aided design file.

11.
J Anim Ecol ; 90(9): 2172-2187, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33901301

RESUMEN

Environmental impacts of the 1986 Chernobyl Nuclear Power Plant accident are much debated, but the effects of radiation on host microbiomes have received little attention to date. We present the first analysis of small mammal gut microbiomes from the Chernobyl Exclusion Zone in relation to total absorbed dose rate, including both caecum and faeces samples. We provide novel evidence that host species determines fungal community composition, and that associations between microbiome (both bacterial and fungal) communities and radiation exposure vary between host species. Using ambient versus total weighted absorbed dose rates in analyses produced different results, with the latter more robust for interpreting microbiome changes at the individual level. We found considerable variation between results for faecal and gut samples of bank voles, suggesting faecal samples are not an accurate indicator of gut composition. Associations between radiation exposure and microbiome composition of gut samples were not robust against geographical variation, although we identified families of bacteria (Lachnospiraceae and Muribaculaceae) and fungi (Steccherinaceae and Strophariaceae) in the guts of bank voles that may serve as biomarkers of radiation exposure. Further studies considering a range of small mammal species are needed to establish the robustness of these potential biomarkers.


Asunto(s)
Accidente Nuclear de Chernóbil , Micobioma , Exposición a la Radiación , Animales , Arvicolinae , Bacterias
12.
Parasitology ; 148(4): 451-463, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33256865

RESUMEN

Helminth infections in wood mice (n = 483), trapped over a period of 26 years in the woods surrounding Malham Tarn in North Yorkshire, were analysed. Although 10 species of helminths were identified, the overall mean species richness was 1.01 species/mouse indicating that the helminth community was relatively depauperate in this wood mouse population. The dominant species was Heligmosomoides polygyrus, the prevalence (64.6%) and abundance (10.4 worms/mouse) of which declined significantly over the study period. Because of the dominance of this species, analyses of higher taxa (combined helminths and combined nematodes) also revealed significantly declining values for prevalence, although not abundance. Helminth species richness (HSR) and Brillouin's index of diversity (BID) did not show covariance with year, neither did those remaining species whose overall prevalence exceeded 5% (Syphacia stroma, Aonchotheca murissylvatici and Plagiorchis muris). Significant age effects were detected for the prevalence and abundance of all higher taxa, H. polygyrus and P. muris, and for HSR and BID, reflecting the accumulation of helminths with increasing host age. Only two cases of sex bias were found; male bias in abundance of P. muris and combined Digenea. We discuss the significance of these results and hypothesize about the underlying causes.


Asunto(s)
Helmintiasis Animal/epidemiología , Helmintiasis Animal/parasitología , Helmintos/clasificación , Murinae/parasitología , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/parasitología , Distribución por Edad , Animales , Cestodos/clasificación , Infecciones por Cestodos/epidemiología , Infecciones por Cestodos/parasitología , Inglaterra/epidemiología , Femenino , Masculino , Nematodos/clasificación , Infecciones por Nematodos/epidemiología , Infecciones por Nematodos/parasitología , Infecciones por Nematodos/veterinaria , Distribución Normal , Prevalencia , Distribución por Sexo , Trematodos/clasificación , Infecciones por Trematodos/epidemiología , Infecciones por Trematodos/parasitología
13.
Infect Immun ; 88(3)2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31792076

RESUMEN

Candida albicans is a leading cause of systemic bloodstream infections, and synthesis of the phospholipid phosphatidylethanolamine (PE) is required for virulence. The psd1Δ/Δ psd2Δ/Δ mutant, which cannot synthesize PE by the cytidine diphosphate diacylglycerol (CDP-DAG) pathway, is avirulent in the mouse model of systemic candidiasis. Similarly, an ept1Δ/Δ mutant, which cannot produce PE by the Kennedy pathway, exhibits decreased kidney fungal burden in systemically infected mice. Conversely, overexpression of EPT1 results in a hypervirulent phenotype in this model. Thus, mutations that increase PE synthesis increase virulence, and mutations that decrease PE synthesis decrease virulence. However, the mechanism by which virulence is regulated by PE synthesis is only partially understood. RNA sequencing was performed on strains with deficient or excessive PE biosynthesis to elucidate the mechanism. Decreased PE synthesis from loss of EPT1 or PSD1 and PSD2 leads to downregulation of genes that impact mitochondrial function. Losses of PSD1 and PSD2, but not EPT1, cause significant increases in transcription of glycosylation genes, which may reflect the substantial cell wall defects in the psd1Δ/Δ psd2Δ/Δ mutant. These accumulated defects could contribute to the decreased virulence observed for mutants with deficient PE synthesis. In contrast to mutants with decreased PE synthesis, there were no transcriptional differences between the EPT1 overexpression strain and the wild type, indicating that the hypervirulent phenotype is a consequence of posttranscriptional changes. It was found that overexpression of EPT1 causes increased chitin content and increased hyphal length. These phenotypes may help to explain the previously observed hypervirulence in the EPT1 overexpressor.


Asunto(s)
Candida albicans/patogenicidad , Pared Celular/química , Hifa/citología , Fosfatidiletanolaminas/metabolismo , Candida albicans/metabolismo , Candidiasis/microbiología , Pared Celular/metabolismo , Quitina/metabolismo , Transcripción Genética
14.
J Acoust Soc Am ; 145(6): 3427, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31255141

RESUMEN

Harbour porpoises are well-suited for passive acoustic monitoring (PAM) as they produce highly stereotyped narrow-band high-frequency (NBHF) echolocation clicks. PAM systems must be coupled with a classification algorithm to identify the signals of interest. Here, the authors present a harbour porpoise click classifier (PorCC) developed in matlab, which uses the coefficients of two logistic regression models in a decision-making pathway to assign candidate signals to one of three categories: high-quality clicks (HQ), low-quality clicks (LQ), or high-frequency noise. The receiver operating characteristics of PorCC was compared to that of PAMGuard's Porpoise Click Detector/Classifier Module. PorCC outperformed PAMGuard's classifier achieving higher hit rates (correctly classified clicks) and lower false alarm levels (noise classified as HQ or LQ clicks). Additionally, the detectability index (d') for HQ clicks for PAMGuard was 2.2 (overall d' = 2.0) versus 4.1 for PorCC (overall d' = 3.4). PorCC classification algorithm is a rapid and highly accurate method to classify NBHF clicks, which could be applied for real time monitoring, as well as to study harbour porpoises, and potentially other NBHF species, throughout their distribution range from data collected using towed hydrophones or static recorders. Moreover, PorCC is suitable for studies of acoustic communication of porpoises.


Asunto(s)
Ecolocación/fisiología , Phocoena/fisiología , Marsopas/fisiología , Vocalización Animal/fisiología , Acústica , Animales , Ruido
15.
Infect Immun ; 86(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29610259

RESUMEN

Campylobacter jejuni is a leading cause of bacterially derived gastroenteritis worldwide. Campylobacter is most commonly acquired through the consumption of undercooked poultry meat or through drinking contaminated water. Following ingestion, Campylobacter adheres to the intestinal epithelium and mucus layer, causing toxin-mediated inflammation and inhibition of fluid reabsorption. Currently, the human response to infection is relatively unknown, and animal hosts that model these responses are rare. As such, we examined patient fecal samples for the accumulation of the neutrophil protein calgranulin C during infection with Campylobacter jejuni In response to infection, calgranulin C was significantly increased in the feces of humans. To determine whether calgranulin C accumulation occurs in an animal model, we examined disease in ferrets. Ferrets were effectively infected by C. jejuni, with peak fecal loads observed at day 3 postinfection and full resolution by day 12. Serum levels of interleukin-10 (IL-10) and tumor necrosis factor alpha (TNF-α) significantly increased in response to infection, which resulted in leukocyte trafficking to the colon. As a result, calgranulin C increased in the feces of ferrets at the time when C. jejuni loads decreased. Further, the addition of purified calgranulin C to C. jejuni cultures was found to inhibit growth in a zinc-dependent manner. These results suggest that upon infection with C. jejuni, leukocytes trafficked to the intestine release calgranulin C as a mechanism for inhibiting C. jejuni growth.


Asunto(s)
Campylobacter jejuni/crecimiento & desarrollo , Proteína S100A12/metabolismo , Zinc/metabolismo , Animales , Campylobacter jejuni/efectos de los fármacos , Colon/citología , Colon/microbiología , Femenino , Hurones , Humanos , Leucocitos , Masculino , Pruebas de Sensibilidad Microbiana , Proteína S100A12/genética
16.
Infect Immun ; 86(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29866908

RESUMEN

Candida albicans mutants for phosphatidylserine (PS) synthase (cho1ΔΔ) and PS decarboxylase (psd1ΔΔ psd2ΔΔ) are compromised for virulence in mouse models of systemic infection and oropharyngeal candidiasis (OPC). Both of these enzymes are necessary to synthesize phosphatidylethanolamine (PE) by the de novo pathway, but these mutants are still capable of growth in culture media, as they can import ethanolamine from media to synthesize PE through the Kennedy pathway. Given that the host has ethanolamine in its serum, the exact mechanism by which virulence is lost in these mutants is not clear. There are two competing hypotheses to explain their loss of virulence. (i) PE from the Kennedy pathway cannot substitute for de novo-synthesized PE. (ii) The mutants cannot acquire sufficient ethanolamine from the host to support adequate PE synthesis. These hypotheses can be simultaneously tested if ethanolamine availability is increased for Candida while it is inside the host. We accomplish this by transcomplementation of C. albicans with the Arabidopsis thaliana serine decarboxylase gene (AtSDC), which converts cytoplasmic serine to ethanolamine. Expression of AtSDC in either mutant restores PE synthesis, even in the absence of exogenous ethanolamine. AtSDC also restores virulence to cho1ΔΔ and psd1ΔΔ psd2ΔΔ strains in systemic and OPC infections. Thus, in the absence of de novo PE synthesis, C. albicans cannot acquire sufficient ethanolamine from the host to support virulence. In addition, expression of AtSDC restores PS synthesis in the cho1ΔΔ mutant, which may be due to causing PS decarboxylase to run backwards and convert PE to PS.


Asunto(s)
Candida albicans/genética , Candida albicans/metabolismo , Carboxiliasas/metabolismo , Etanolamina/metabolismo , Fosfatidiletanolaminas/metabolismo , Virulencia/genética , Virulencia/fisiología , Animales , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Variación Genética , Interacciones Huésped-Patógeno/fisiología , Ratones
17.
Mol Ecol ; 27(4): 1044-1052, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29290094

RESUMEN

The animal immune response has hitherto been viewed primarily in the context of resistance only. However, individuals can also employ a tolerance strategy to maintain good health in the face of ongoing infection. To shed light on the genetic and physiological basis of tolerance, we use a natural population of field voles, Microtus agrestis, to search for an association between the expression of the transcription factor Gata3, previously identified as a marker of tolerance in this system, and polymorphism in 84 immune and nonimmune genes. Our results show clear evidence for an association between Gata3 expression and polymorphism in the Fcer1a gene, with the explanatory power of this polymorphism being comparable to that of other nongenetic variables previously identified as important predictors of Gata3 expression. We also uncover the possible mechanism behind this association using an existing protein-protein interaction network for the mouse model rodent, Mus musculus, which we validate using our own expression network for M. agrestis. Our results suggest that the polymorphism in question may be working at the transcriptional level, leading to changes in the expression of the Th2-related genes, Tyrosine-protein kinase BTK and Tyrosine-protein kinase TXK, and hence potentially altering the strength of the Th2 response, of which Gata3 is a mediator. We believe our work has implications for both treatment and control of infectious disease.


Asunto(s)
Adaptación Fisiológica/genética , Arvicolinae/genética , Estudios de Asociación Genética , Genética de Población , Agammaglobulinemia Tirosina Quinasa/genética , Animales , Factor de Transcripción GATA3/genética , Haplotipos/genética , Ratones , Polimorfismo Genético , Mapas de Interacción de Proteínas , Proteínas Tirosina Quinasas/genética , Receptores de IgE/genética
18.
Glob Chang Biol ; 24(1): 371-386, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28746785

RESUMEN

Immune defense is temperature dependent in cold-blooded vertebrates (CBVs) and thus directly impacted by global warming. We examined whether immunity and within-host infectious disease progression are altered in CBVs under realistic climate warming in a seasonal mid-latitude setting. Going further, we also examined how large thermal effects are in relation to the effects of other environmental variation in such a setting (critical to our ability to project infectious disease dynamics from thermal relationships alone). We employed the three-spined stickleback and three ecologically relevant parasite infections as a "wild" model. To generate a realistic climatic warming scenario we used naturalistic outdoors mesocosms with precise temperature control. We also conducted laboratory experiments to estimate thermal effects on immunity and within-host infectious disease progression under controlled conditions. As experimental readouts we measured disease progression for the parasites and expression in 14 immune-associated genes (providing insight into immunophenotypic responses). Our mesocosm experiment demonstrated significant perturbation due to modest warming (+2°C), altering the magnitude and phenology of disease. Our laboratory experiments demonstrated substantial thermal effects. Prevailing thermal effects were more important than lagged thermal effects and disease progression increased or decreased in severity with increasing temperature in an infection-specific way. Combining laboratory-determined thermal effects with our mesocosm data, we used inverse modeling to partition seasonal variation in Saprolegnia disease progression into a thermal effect and a latent immunocompetence effect (driven by nonthermal environmental variation and correlating with immune gene expression). The immunocompetence effect was large, accounting for at least as much variation in Saprolegnia disease as the thermal effect. This suggests that managers of CBV populations in variable environments may not be able to reliably project infectious disease risk from thermal data alone. Nevertheless, such projections would be improved by primarily considering prevailing thermal effects in the case of within-host disease and by incorporating validated measures of immunocompetence.


Asunto(s)
Enfermedades de los Peces/parasitología , Saprolegnia/fisiología , Smegmamorpha/parasitología , Animales , Enfermedades de los Peces/inmunología , Calentamiento Global , Estaciones del Año , Temperatura
19.
Emerg Infect Dis ; 23(6): 1033-1035, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28518021

RESUMEN

We report a PCR survey of hantavirus infection in an extensive field vole (Microtus agrestis) population present in the Kielder Forest, northern England. A Tatenale virus-like lineage was frequently detected (≈17% prevalence) in liver tissue. Lineages genetically similar to Tatenale virus are likely to be endemic in northern England.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Hantavirus/veterinaria , Orthohantavirus/genética , ARN Viral/genética , Enfermedades de los Roedores/epidemiología , Animales , Arvicolinae , Inglaterra/epidemiología , Orthohantavirus/clasificación , Orthohantavirus/inmunología , Orthohantavirus/aislamiento & purificación , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/transmisión , Infecciones por Hantavirus/virología , Hígado/virología , Filogenia , Prevalencia , Enfermedades de los Roedores/transmisión , Enfermedades de los Roedores/virología
20.
PLoS Biol ; 12(7): e1001901, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25004450

RESUMEN

Hosts are likely to respond to parasitic infections by a combination of resistance (expulsion of pathogens) and tolerance (active mitigation of pathology). Of these strategies, the basis of tolerance in animal hosts is relatively poorly understood, with especially little known about how tolerance is manifested in natural populations. We monitored a natural population of field voles using longitudinal and cross-sectional sampling modes and taking measurements on body condition, infection, immune gene expression, and survival. Using analyses stratified by life history stage, we demonstrate a pattern of tolerance to macroparasites in mature compared to immature males. In comparison to immature males, mature males resisted infection less and instead increased investment in body condition in response to accumulating burdens, but at the expense of reduced reproductive effort. We identified expression of the transcription factor Gata3 (a mediator of Th2 immunity) as an immunological biomarker of this tolerance response. Time series data for individual animals suggested that macroparasite infections gave rise to increased expression of Gata3, which gave rise to improved body condition and enhanced survival as hosts aged. These findings provide a clear and unexpected insight into tolerance responses (and their life history sequelae) in a natural vertebrate population. The demonstration that such responses (potentially promoting parasite transmission) can move from resistance to tolerance through the course of an individual's lifetime emphasises the need to incorporate them into our understanding of the dynamics and risk of infection in the natural environment. Moreover, the identification of Gata3 as a marker of tolerance to macroparasites raises important new questions regarding the role of Th2 immunity and the mechanistic nature of the tolerance response itself. A more manipulative, experimental approach is likely to be valuable in elaborating this further.


Asunto(s)
Arvicolinae/inmunología , Tolerancia Inmunológica/fisiología , Animales , Animales Salvajes , Estudios Transversales , Factor de Transcripción GATA3/biosíntesis , Interacciones Huésped-Parásitos , Estudios Longitudinales , Masculino , Enfermedades Parasitarias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA