Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 580: 1222-1236, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28024744

RESUMEN

Clearly defined protection goals specifying what to protect, where and when, are required for designing scientifically sound risk assessments and effective risk management of chemicals. Environmental protection goals specified in EU legislation are defined in general terms, resulting in uncertainty in how to achieve them. In 2010, the European Food Safety Authority (EFSA) published a framework to identify more specific protection goals based on ecosystem services potentially affected by plant protection products. But how applicable is this framework to chemicals with different emission scenarios and receptor ecosystems? Four case studies used to address this question were: (i) oil refinery waste water exposure in estuarine environments; (ii) oil dispersant exposure in aquatic environments; (iii) down the drain chemicals exposure in a wide range of ecosystems (terrestrial and aquatic); (iv) persistent organic pollutant exposure in remote (pristine) Arctic environments. A four-step process was followed to identify ecosystems and services potentially impacted by chemical emissions and to define specific protection goals. Case studies demonstrated that, in principle, the ecosystem services concept and the EFSA framework can be applied to derive specific protection goals for a broad range of chemical exposure scenarios. By identifying key habitats and ecosystem services of concern, the approach offers the potential for greater spatial and temporal resolution, together with increased environmental relevance, in chemical risk assessments. With modifications including improved clarity on terminology/definitions and further development/refinement of the key concepts, we believe the principles of the EFSA framework could provide a methodical approach to the identification and prioritization of ecosystems, ecosystem services and the service providing units that are most at risk from chemical exposure.

2.
Integr Environ Assess Manag ; 13(1): 17-37, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27243906

RESUMEN

This critical review examines the definition and implementation of environmental protection goals for chemicals in current European Union (EU) legislation, guidelines, and international agreements to which EU countries are party. The European chemical industry is highly regulated, and prospective environmental risk assessments (ERAs) are tailored for different classes of chemical, according to their specific hazards, uses, and environmental exposure profiles. However, environmental protection goals are often highly generic, requiring the prevention of "unacceptable" or "adverse" impacts on "biodiversity" and "ecosystems" or the "environment as a whole." This review aims to highlight working examples, challenges, solutions, and best practices for defining specific protection goals (SPGs), which are seen to be essential for refining and improving ERA. Specific protection goals hinge on discerning acceptable versus unacceptable adverse effects on the key attributes of relevant, sensitive ecological entities (ranging from organisms to ecosystems). Some isolated examples of SPGs for terrestrial and aquatic biota can be found in prospective ERA guidance for plant protection products (PPPs). However, SPGs are generally limited to environmental or nature legislation that requires environmental monitoring and retrospective ERA. This limitation is due mainly to the availability of baselines, which define acceptable versus unacceptable environmental effects on the key attributes of sentinel species, populations and/or communities, such as reproductive status, abundance, or diversity. Nevertheless, very few regulatory case examples exist in which SPGs incorporate effect magnitude, spatial extent, and temporal duration. We conclude that more holistic approaches are needed for defining SPGs, particularly with respect to protecting population sustainability, ecosystem function, and integrity, which are implicit in generic protection goals and explicit in the International Programme for Chemical Safety (IPCS) definition of "adverse effect." A possible solution, which the chemical industry is currently assessing, is wider application of the ecosystem services approach proposed by the European Food Safety Authority (EFSA) for the risk assessment of PPPs. Integr Environ Assess Manag 2017;13:17-37. © 2016 SETAC.


Asunto(s)
Monitoreo del Ambiente/normas , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Ecotoxicología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Monitoreo del Ambiente/métodos , Contaminantes Ambientales , Unión Europea , Inocuidad de los Alimentos , Medición de Riesgo/normas
3.
Environ Toxicol Chem ; 35(5): 1077-86, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26526979

RESUMEN

Surfactants are a commercially important group of chemicals widely used on a global scale. Despite high removal efficiencies during wastewater treatment, their high consumption volumes mean that a certain fraction will always enter aquatic ecosystems, with marine environments being the ultimate sites of deposition. Consequently, surfactants have been detected within marine waters and sediments. However, aquatic environmental studies have mostly focused on the freshwater environment, and marine studies are considerably underrepresented by comparison. The present review aims to provide a summary of current marine environmental fate (monitoring, biodegradation, and bioconcentration) and effects data of 5 key surfactant groups: linear alkylbenzene sulfonates, alcohol ethoxysulfates, alkyl sulfates, alcohol ethoxylates, and ditallow dimethyl ammonium chloride. Monitoring data are currently limited, especially for alcohol ethoxysulfates and alkyl sulfates. Biodegradation was shown to be considerably slower under marine conditions, whereas ecotoxicity studies suggest that marine species are approximately equally as sensitive to these surfactants as freshwater species. Marine bioconcentration studies are almost nonexistent. Current gaps within the literature are presented, thereby highlighting research areas where additional marine studies should focus.


Asunto(s)
Agua de Mar/química , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Ácidos Alcanesulfónicos/toxicidad , Organismos Acuáticos/efectos de los fármacos , Biodegradación Ambiental , Ecosistema , Monitoreo del Ambiente , Agua Dulce/química , Sedimentos Geológicos/química , Compuestos de Amonio Cuaternario/toxicidad , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA