Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochemistry ; 54(42): 6454-61, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26435421

RESUMEN

Human vitamin K epoxide reductase (hVKOR) is an integral membrane protein responsible for the maintenance of reduced vitamin K pools, a prerequisite for the action of γ-glutamyl carboxylase and hence for hemostasis. Here we describe the recombinant expression of hVKOR as an insoluble fusion protein in Escherichia coli, followed by purification and chemical cleavage under denaturing conditions. In vitro renaturation and reconstitution of purified solubilized hVKOR in phospholipids could be established to yield active protein. Crucially, the renatured enzyme is inhibited by the powerful coumarin anticoagulant warfarin, and we demonstrate that enzyme activity depends on lipid composition. The completely synthetic system for protein production allows a rational investigation of the multiple variables in membrane protein folding and paves the way for the provision of pure, active membrane protein for structural studies.


Asunto(s)
Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Técnicas In Vitro , Cinética , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Fosfolípidos/química , Fosfolípidos/metabolismo , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vitamina K Epóxido Reductasas/genética , Warfarina/farmacología
2.
Proteins ; 81(5): 830-40, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23255122

RESUMEN

Neisseria meningitidis is the main causative agent of bacterial meningitis. In its outer membrane, the trimeric Neisserial porin PorB is responsible for the diffusive transport of essential hydrophilic solutes across the bilayer. Previous molecular dynamics simulations based on the recent crystal structure of PorB have suggested the presence of distinct solute translocation pathways through this channel. Although PorB has been electrophysiologically characterized as anion-selective, cation translocation through nucleotide-bound PorB during pathogenesis is thought to be instrumental for host cell death. As a result, we were particularly interested in further characterizing cation transport through the pore. We combined a structural approach with additional computational analysis. Here, we present two crystal structures of PorB at 2.1 and 2.65 Å resolution. The new structures display additional electron densities around the protruding loop 3 (L3) inside the pore. We show that these electron densities can be identified as monovalent cations, in our case Cs(+), which are tightly bound to the inner channel. Molecular dynamics simulations reveal further ion interactions and the free energy landscape for ions inside PorB. Our results suggest that the crystallographically identified locations of Cs(+) form a cation transport pathway inside the pore. This finding suggests how positively charged ions are translocated through PorB when the channel is inserted into mitochondrial membranes during Neisserial infection, a process which is considered to dissipate the mitochondrial transmembrane potential gradient and thereby induce apoptosis.


Asunto(s)
Cesio/metabolismo , Neisseria meningitidis/química , Porinas/química , Sitios de Unión , Cationes/metabolismo , Cristalografía por Rayos X , Humanos , Transporte Iónico , Meningitis Meningocócica/microbiología , Simulación de Dinámica Molecular , Neisseria meningitidis/metabolismo , Porinas/metabolismo , Termodinámica
3.
Methods Mol Biol ; 1700: 97-109, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177828

RESUMEN

A major hurdle in membrane protein crystallography is generating crystals diffracting sufficiently for structure determination. This is often attributed not only to the difficulty of obtaining functionally active protein in mg amounts but also to the intrinsic flexibility of its multiple conformations. The cocrystallization of membrane proteins with antibody fragments has been reported as an effective approach to improve the diffraction quality of membrane protein crystals by limiting the intrinsic flexibility. Isolating suitable antibody fragments recognizing a single conformation of a native membrane protein is not a straightforward task. However, by a systematic screening approach, the time to obtain suitable antibody fragments and consequently the chance of obtaining diffracting crystals can be reduced. In this chapter, we describe a protocol for the generation of Fab fragments recognizing the native conformation of a major facilitator superfamily (MFS)-type MDR transporter MdfA from Escherichia coli. We confirmed that the use of Fab fragments was efficient for stabilization of MdfA and improvement of its crystallization properties.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Proteínas de Transporte de Membrana/química , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/química , Proteínas de Escherichia coli/inmunología , Fragmentos Fab de Inmunoglobulinas/química , Proteínas de Transporte de Membrana/inmunología , Conformación Molecular , Estabilidad Proteica , Especificidad por Sustrato
4.
Nat Commun ; 9(1): 4005, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275448

RESUMEN

Multidrug resistance (MDR) poses a major challenge to medicine. A principle cause of MDR is through active efflux by MDR transporters situated in the bacterial membrane. Here we present the crystal structure of the major facilitator superfamily (MFS) drug/H+ antiporter MdfA from Escherichia coli in an outward open conformation. Comparison with the inward facing (drug binding) state shows that, in addition to the expected change in relative orientations of the N- and C-terminal lobes of the antiporter, the conformation of TM5 is kinked and twisted. In vitro reconstitution experiments demonstrate the importance of selected residues for transport and molecular dynamics simulations are used to gain insights into antiporter switching. With the availability of structures of alternative conformational states, we anticipate that MdfA will serve as a model system for understanding drug efflux in MFS MDR antiporters.


Asunto(s)
Antiportadores/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Sustitución de Aminoácidos , Antiportadores/genética , Antiportadores/metabolismo , Membrana Celular/metabolismo , Cloranfenicol/metabolismo , Cristalografía por Rayos X , Resistencia a Múltiples Medicamentos/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Transporte de Proteínas , Relación Estructura-Actividad
6.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 7): 423-430, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28695852

RESUMEN

The active efflux of antibiotics by multidrug-resistance (MDR) transporters is a major pathway of drug resistance and complicates the clinical treatment of bacterial infections. MdfA is a member of the major facilitator superfamily (MFS) from Escherichia coli and provides resistance to a wide variety of dissimilar toxic compounds, including neutral, cationic and zwitterionic substances. The 12-transmembrane-helix MdfA was expressed as a GFP-octahistidine fusion protein with a TEV protease cleavage site. Following tag removal, MdfA was purified using two chromatographic steps, complexed with a Fab fragment and further purified using size-exclusion chromatography. MdfA and MdfA-Fab complexes were subjected to both vapour-diffusion and lipidic cubic phase (LCP) crystallization techniques. Vapour-diffusion-grown crystals were of type II, with poor diffraction behaviour and weak crystal contacts. LCP lipid screening resulted in type I crystals that diffracted to 3.4 Šresolution and belonged to the hexagonal space group P6122.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas Recombinantes de Fusión/química , Secuencias de Aminoácidos , Sitios de Unión , Cromatografía en Gel , Clonación Molecular , Cristalografía por Rayos X , Farmacorresistencia Bacteriana Múltiple , Endopeptidasas/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Fragmentos Fab de Inmunoglobulinas/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA