Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Expert Opin Drug Discov ; 17(8): 839-848, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35733389

RESUMEN

INTRODUCTION: Adrenomedullin (AM) is a peptide responsible for many physiological processes including vascular health and hormone regulation. Dysregulation of AM signaling can stimulate cancers by promoting proliferation, angiogenesis and metastasis. Two AM receptors contribute to tumor progression in different ways. Adrenomedullin-1 receptor (AM1R) regulates blood pressure and blocking AM signaling via AM1R would be clinically unacceptable. Therefore, antagonizing adrenomedullin-2 receptor (AM2R) presents as an avenue for anti-cancer drug development. AREAS COVERED: We review the literature to highlight AM's role in cancer as well as delineating the specific roles AM1R and AM2R mediate in the development of a pro-tumoral microenvironment. We highlight the importance of exploring the residue differences between the receptors that led to the development of first-in-class selective AM2R small molecule antagonists. We also summarize the current approaches targeting AM and its receptors, their anti-tumor effects and their limitations. EXPERT OPINION: As tool compounds, AM2R antagonists will allow the dissection of the functions of CGRPR (calcitonin gene-related peptide receptor), AM1R and AM2R, and has considerable potential as a first-in-class oncology therapy. Furthermore, the lack of detectable side effects and good drug-like pharmacokinetic properties of these AM2R antagonists support the promise of this class of compounds as potential anti-cancer therapeutics.


Asunto(s)
Antineoplásicos , Neoplasias , Adrenomedulina , Antineoplásicos/farmacología , Proteína Similar al Receptor de Calcitonina/química , Humanos , Neoplasias/tratamiento farmacológico , Proteína 2 Modificadora de la Actividad de Receptores/química , Proteína 3 Modificadora de la Actividad de Receptores/química , Receptores de Adrenomedulina/química , Microambiente Tumoral
2.
J Med Chem ; 64(6): 3299-3319, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33666424

RESUMEN

Class B G-protein-coupled receptors (GPCRs) remain an underexploited target for drug development. The calcitonin receptor (CTR) family is particularly challenging, as its receptors are heteromers comprising two distinct components: the calcitonin receptor-like receptor (CLR) or calcitonin receptor (CTR) together with one of three accessory proteins known as receptor activity-modifying proteins (RAMPs). CLR/RAMP1 forms a CGRP receptor, CLR/RAMP2 forms an adrenomedullin-1 (AM1) receptor, and CLR/RAMP3 forms an adrenomedullin-2 (AM2) receptor. The CTR/RAMP complexes form three distinct amylin receptors. While the selective blockade of AM2 receptors would be therapeutically valuable, inhibition of AM1 receptors would cause clinically unacceptable increased blood pressure. We report here a systematic study of structure-activity relationships that has led to the development of first-in-class AM2 receptor antagonists. These compounds exhibit therapeutically valuable properties with 1000-fold selectivity over the AM1 receptor. These results highlight the therapeutic potential of AM2 antagonists.


Asunto(s)
Receptores de Adrenomedulina/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Descubrimiento de Drogas , Femenino , Humanos , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Receptores de Adrenomedulina/metabolismo , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Relación Estructura-Actividad , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
3.
ACS Pharmacol Transl Sci ; 3(4): 706-719, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32832872

RESUMEN

The hormone adrenomedullin has both physiological and pathological roles in biology. As a potent vasodilator, adrenomedullin is critically important in the regulation of blood pressure, but it also has several roles in disease, of which its actions in cancer are becoming recognized to have clinical importance. Reduced circulating adrenomedullin causes increased blood pressure but also reduces tumor progression, so drugs blocking all effects of adrenomedullin would be unacceptable clinically. However, there are two distinct receptors for adrenomedullin, each comprising the same G protein-coupled receptor (GPCR), the calcitonin receptor-like receptor (CLR), together with a different accessory protein known as a receptor activity-modifying protein (RAMP). The CLR with RAMP2 forms an adrenomedullin-1 receptor, and the CLR with RAMP3 forms an adrenomedullin-2 receptor. Recent research suggests that a selective blockade of adrenomedullin-2 receptors would be therapeutically valuable. Here we describe the design, synthesis, and characterization of potent small-molecule adrenomedullin-2 receptor antagonists with 1000-fold selectivity over the adrenomedullin-1 receptor, although retaining activity against the CGRP receptor. These molecules have clear effects on markers of pancreatic cancer progression in vitro, drug-like pharmacokinetic properties, and inhibit xenograft tumor growth and extend life in a mouse model of pancreatic cancer. Taken together, our data support the promise of a new class of anticancer therapeutics as well as improved understanding of the pharmacology of the adrenomedullin receptors and other GPCR/RAMP heteromers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA