Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Radiat Environ Biophys ; 61(4): 545-559, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220965

RESUMEN

The outcome of the exposure of living organisms to ionizing radiation is determined by the distribution of the associated energy deposition at different spatial scales. Radiation proceeds through ionizations and excitations of hit molecules with an ~ nm spacing. Approaches such as nanodosimetry/microdosimetry and Monte Carlo track-structure simulations have been successfully adopted to investigate radiation quality effects: they allow to explore correlations between the spatial clustering of such energy depositions at the scales of DNA or chromosome domains and their biological consequences at the cellular level. Physical features alone, however, are not enough to assess the entity and complexity of radiation-induced DNA damage: this latter is the result of an interplay between radiation track structure and the spatial architecture of chromatin, and further depends on the chromatin dynamic response, affecting the activation and efficiency of the repair machinery. The heterogeneity of radiation energy depositions at the single-cell level affects the trade-off between cell inactivation and induction of viable mutations and hence influences radiation-induced carcinogenesis. In radiation therapy, where the goal is cancer cell inactivation, the delivery of a homogenous dose to the tumour has been the traditional approach in clinical practice. However, evidence is accumulating that introducing heterogeneity with spatially fractionated beams (mini- and microbeam therapy) can lead to significant advantages, particularly in sparing normal tissues. Such findings cannot be explained in merely physical terms, and their interpretation requires considering the scales at play in the underlying biological mechanisms, suggesting a systemic response to radiation.


Asunto(s)
Exposición a la Radiación , Radiación Ionizante , Método de Montecarlo , Daño del ADN , Cromatina
2.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071949

RESUMEN

Exposing cells to DNA damaging agents, such as ionizing radiation (IR) or cytotoxic chemicals, can cause DNA double-strand breaks (DSBs), which are crucial to repair to maintain genetic integrity. O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational modification (PTM), which has been reported to be involved in the DNA damage response (DDR) and chromatin remodeling. Here, we investigated the impact of O-GlcNAcylation on the DDR, DSB repair and chromatin status in more detail. We also applied charged particle irradiation to analyze differences of O-GlcNAcylation and its impact on DSB repair in respect of spatial dose deposition and radiation quality. Various techniques were used, such as the γH2AX foci assay, live cell microscopy and Fluorescence Lifetime Microscopy (FLIM) to detect DSB rejoining, protein accumulation and chromatin states after treating the cells with O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) inhibitors. We confirmed that O-GlcNAcylation of MDC1 is increased upon irradiation and identified additional repair factors related to Homologous Recombination (HR), CtIP and BRCA1, which were increasingly O-GlcNAcyated upon irradiation. This is consistent with our findings that the function of HR is affected by OGT inhibition. Besides, we found that OGT and OGA activity modulate chromatin compaction states, providing a potential additional level of DNA-repair regulation.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Células HeLa , Recombinación Homóloga , Humanos , Transferencia Lineal de Energía , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Radiación Ionizante
3.
Proc Natl Acad Sci U S A ; 114(21): 5533-5538, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484035

RESUMEN

Brain development and function depend on the directed and coordinated migration of neurons from proliferative zones to their final position. The secreted glycoprotein Reelin is an important factor directing neuronal migration. Loss of Reelin function results in the severe developmental disorder lissencephaly and is associated with neurological diseases in humans. Reelin signals via the lipoprotein receptors very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), but the exact mechanism by which these receptors control cellular function is poorly understood. We report that loss of the signaling scaffold intersectin 1 (ITSN1) in mice leads to defective neuronal migration and ablates Reelin stimulation of hippocampal long-term potentiation (LTP). Knockout (KO) mice lacking ITSN1 suffer from dispersion of pyramidal neurons and malformation of the radial glial scaffold, akin to the hippocampal lamination defects observed in VLDLR or ApoER2 mutants. ITSN1 genetically interacts with Reelin receptors, as evidenced by the prominent neuronal migration and radial glial defects in hippocampus and cortex seen in double-KO mice lacking ITSN1 and ApoER2. These defects were similar to, albeit less severe than, those observed in Reelin-deficient or VLDLR/ ApoER2 double-KO mice. Molecularly, ITSN1 associates with the VLDLR and its downstream signaling adaptor Dab1 to facilitate Reelin signaling. Collectively, these data identify ITSN1 as a component of Reelin signaling that acts predominantly by facilitating the VLDLR-Dab1 axis to direct neuronal migration in the cortex and hippocampus and to augment synaptic plasticity.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Neuronas/fisiología , Serina Endopeptidasas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Movimiento Celular , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Ratones Noqueados , Receptores de LDL/metabolismo , Receptores de N-Metil-D-Aspartato/aislamiento & purificación , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Reelina
4.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168789

RESUMEN

Chromatin architecture plays major roles in gene regulation as well as in the repair of DNA damaged by endogenous or exogenous factors, such as after radiation. Opening up the chromatin might provide the necessary accessibility for the recruitment and binding of repair factors, thus facilitating timely and correct repair. The observed formation of ionizing radiation-induced foci (IRIF) of factors, such as 53BP1, upon induction of DNA double-strand breaks have been recently linked to local chromatin decompaction. Using correlative light and electron microscopy (CLEM) in combination with DNA-specific contrasting for transmission electron microscopy or tomography, we are able to show that at the ultrastructural level, these DNA damage domains reveal a chromatin compaction and organization not distinguishable from regular euchromatin upon irradiation with carbon or iron ions. Low Density Areas (LDAs) at sites of particle-induced DNA damage, as observed after unspecific uranyl acetate (UA)-staining, are thus unlikely to represent pure chromatin decompaction. RNA-specific terbium-citrate (Tb) staining suggests rather a reduced RNA density contributing to the LDA phenotype. Our observations are discussed in the view of liquid-like phase separation as one of the mechanisms of regulating DNA repair.


Asunto(s)
Cromatina/ultraestructura , Daño del ADN/efectos de la radiación , Iones Pesados/efectos adversos , Animales , Línea Celular Tumoral , Cromatina/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Tomografía con Microscopio Electrónico , Humanos , Ratones , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Células 3T3 NIH , Fenotipo
5.
Nucleic Acids Res ; 44(4): 1732-45, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26712563

RESUMEN

Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.


Asunto(s)
Antígenos Nucleares/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/genética , Fase S/genética , Animales , Daño del ADN/genética , Reparación del ADN/genética , Fibroblastos/metabolismo , Células HCT116 , Recombinación Homóloga , Humanos , Autoantígeno Ku , Ratones , Transducción de Señal
6.
Int J Mol Sci ; 19(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110966

RESUMEN

In recent years several approaches have been developed to address the chromatin status and its changes in eukaryotic cells under different conditions-but only few are applicable in living cells. Fluorescence lifetime imaging microscopy (FLIM) is a functional tool that can be used for the inspection of the molecular environment of fluorophores in living cells. Here, we present the use of single organic minor groove DNA binder dyes in FLIM for measuring chromatin changes following modulation of chromatin structure in living cells. Treatment with histone deacetylase inhibitors led to an increased fluorescence lifetime indicating global chromatin decompaction, whereas hyperosmolarity decreased the lifetime of the used dyes, thus reflecting the expected compaction. In addition, we demonstrate that time domain FLIM data based on single photon counting should be optimized using pile-up and counting loss correction, which affect the readout even at moderate average detector count rates in inhomogeneous samples. Using these corrections and utilizing Hoechst 34580 as chromatin compaction probe, we measured a pan nuclear increase in the lifetime following irradiation with X-rays in living NIH/3T3 cells thus providing a method to measure radiation-induced chromatin decompaction.


Asunto(s)
Bencimidazoles/farmacología , Ensamble y Desensamble de Cromatina/efectos de la radiación , ADN/metabolismo , Colorantes Fluorescentes/farmacología , Rayos X , Animales , Ratones , Microscopía Fluorescente , Células 3T3 NIH
7.
Nucleic Acids Res ; 43(17): 8352-67, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26240375

RESUMEN

The MRE11/RAD50/NBS1 (MRN) complex plays a central role as a sensor of DNA double strand breaks (DSB) and is responsible for the efficient activation of ataxia-telangiectasia mutated (ATM) kinase. Once activated ATM in turn phosphorylates RAD50 and NBS1, important for cell cycle control, DNA repair and cell survival. We report here that MRE11 is also phosphorylated by ATM at S676 and S678 in response to agents that induce DNA DSB, is dependent on the presence of NBS1, and does not affect the association of members of the complex or ATM activation. A phosphosite mutant (MRE11S676AS678A) cell line showed decreased cell survival and increased chromosomal aberrations after radiation exposure indicating a defect in DNA repair. Use of GFP-based DNA repair reporter substrates in MRE11S676AS678A cells revealed a defect in homology directed repair (HDR) but single strand annealing was not affected. More detailed investigation revealed that MRE11S676AS678A cells resected DNA ends to a greater extent at sites undergoing HDR. Furthermore, while ATM-dependent phosphorylation of Kap1 and SMC1 was normal in MRE11S676AS678A cells, there was no phosphorylation of Exonuclease 1 consistent with the defect in HDR. These results describe a novel role for ATM-dependent phosphorylation of MRE11 in limiting the extent of resection mediated through Exonuclease 1.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Reparación del ADN por Recombinación , Transducción de Señal , Línea Celular , Línea Celular Tumoral , Daño del ADN , Proteínas de Unión al ADN/química , Humanos , Fosforilación , Radiación Ionizante
8.
Nucleic Acids Res ; 41(12): 6109-18, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23620287

RESUMEN

DNA double-strand breaks (DSB) are considered as the most deleterious DNA lesions, and their repair is further complicated by increasing damage complexity. However, the molecular effects of clustered lesions are yet not fully understood. As the locally restricted phosphorylation of H2AX to form γH2AX is a key step in facilitating efficient DSB repair, we investigated this process after localized induction of clustered damage by ionizing radiation. We show that in addition to foci at damaged sites, H2AX is also phosphorylated in undamaged chromatin over the whole-cell nucleus in human and rodent cells, but this is not related to apoptosis. This pan-nuclear γH2AX is mediated by the kinases ataxia telangiectasia mutated and DNA-dependent protein kinase (DNA-PK) that also phosphorylate H2AX at DSBs. The pan-nuclear response is dependent on the amount of DNA damage and is transient even under conditions of impaired DSB repair. Using fluorescence recovery after photobleaching (FRAP), we found that MDC1, but not 53BP1, binds to the nuclear-wide γH2AX. Consequently, the accumulation of MDC1 at DSBs is reduced. Altogether, we show that a transient dose-dependent activation of the kinases occurring on complex DNA lesions leads to their nuclear-wide distribution and H2AX phosphorylation, yet without eliciting a full pan-nuclear DNA damage response.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/enzimología , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Células Cultivadas , Cromatina/química , Cricetinae , Histonas/análisis , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Fosforilación , Radiación Ionizante , Transactivadores/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
9.
Mutat Res ; 756(1-2): 30-6, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23628434

RESUMEN

Chromatin modifications are long known as an essential part of the orchestrated response resulting in the repair of radiation-induced DNA double-strand breaks (DSBs). Only recently, however, the influence of the chromatin architecture itself on the DNA damage response has been recognised. Thus for heterochromatic DSBs the sensing and early recruitment of repair factors to the lesion occurs within the heterochromatic compartments, but the damage sites are subsequently relocated from the inside to the outside of the heterochromatin. While previous studies were accomplished at the constitutive heterochromatin of centromeric regions in mouse and flies, here we examine the DSB repair at the facultative heterochromatin of the inactive X chromosome (Xi) in humans. Using heavy ion irradiation we show that at later times after irradiation the DSB damage streaks bend around the Xi verifying that the relocation process is conserved between species and not specialised to repetitive sequences only. In addition, to measure chromatin relaxation at rare positions within the genome, we established live cell microscopy at the GSI microbeam thus allowing the aimed irradiation of small nuclear structures like the Xi. Chromatin decondensation at DSBs within the Xi is clearly visible within minutes as a continuous decrease of the DNA staining over time, comparable to the DNA relaxation revealed at DSBs in mouse chromocenters. Furthermore, despite being conserved between species, slight differences in the underlying regulation of these processes in heterochromatic DSBs are apparent.


Asunto(s)
Cromatina/genética , Cromosomas Humanos X/genética , Daño del ADN/genética , Reparación del ADN/genética , Fibroblastos/patología , Heterocromatina/genética , Animales , Cromosomas Humanos X/efectos de la radiación , Daño del ADN/efectos de la radiación , Femenino , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Células 3T3 NIH
10.
Nucleic Acids Res ; 39(15): 6489-99, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21511815

RESUMEN

DNA double-strand breaks (DSBs) can induce chromosomal aberrations and carcinogenesis and their correct repair is crucial for genetic stability. The cellular response to DSBs depends on damage signaling including the phosphorylation of the histone H2AX (γH2AX). However, a lack of γH2AX formation in heterochromatin (HC) is generally observed after DNA damage induction. Here, we examine γH2AX and repair protein foci along linear ion tracks traversing heterochromatic regions in human or murine cells and find the DSBs and damage signal streaks bending around highly compacted DNA. Given the linear particle path, such bending indicates a relocation of damage from the initial induction site to the periphery of HC. Real-time imaging of the repair protein GFP-XRCC1 confirms fast recruitment to heterochromatic lesions inside murine chromocenters. Using single-ion microirradiation to induce localized DSBs directly within chromocenters, we demonstrate that H2AX is early phosphorylated within HC, but the damage site is subsequently expelled from the center to the periphery of chromocenters within ∼ 20 min. While this process can occur in the absence of ATM kinase, the repair of DSBs bordering HC requires the protein. Finally, we describe a local decondensation of HC at the sites of ion hits, potentially allowing for DSB movement via physical forces.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Eucromatina/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Cinética , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
11.
J Biol Chem ; 286(11): 9107-19, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21149446

RESUMEN

The recognition and signaling of DNA double strand breaks involves the participation of multiple proteins, including the protein kinase ATM (mutated in ataxia-telangiectasia). ATM kinase is activated in the vicinity of the break and is recruited to the break site by the Mre11-Rad50-Nbs1 complex, where it is fully activated. In human cells, the activation process involves autophosphorylation on three sites (Ser(367), Ser(1893), and Ser(1981)) and acetylation on Lys(3016). We now describe the identification of a new ATM phosphorylation site, Thr(P)(1885) and an additional autophosphorylation site, Ser(P)(2996), that is highly DNA damage-inducible. We also confirm that human and murine ATM share five identical phosphorylation sites. We targeted the ATM phosphorylation sites, Ser(367) and Ser(2996), for further study by generating phosphospecific antibodies against these sites and demonstrated that phosphorylation of both was rapidly induced by radiation. These phosphorylations were abolished by a specific inhibitor of ATM and were dependent on ATM and the Mre11-Rad50-Nbs1 complex. As found for Ser(P)(1981), ATM phosphorylated at Ser(367) and Ser(2996) localized to sites of DNA damage induced by radiation, but ATM recruitment was not dependent on phosphorylation at these sites. Phosphorylation at Ser(367) and Ser(2996) was functionally important because mutant forms of ATM were defective in correcting the S phase checkpoint defect and restoring radioresistance in ataxia-telangiectasia cells. These data provide further support for the importance of autophosphorylation in the activation and function of ATM in vivo.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ácido Anhídrido Hidrolasas , Animales , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular Transformada , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Activación Enzimática/efectos de la radiación , Humanos , Proteína Homóloga de MRE11 , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/genética , Fosforilación/efectos de la radiación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Radiación Ionizante , Fase S/efectos de los fármacos , Fase S/genética , Fase S/efectos de la radiación , Proteínas Supresoras de Tumor/genética
12.
J Biol Chem ; 286(36): 31542-56, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21757780

RESUMEN

The Mre11/Rad50/NBN complex plays a central role in coordinating the cellular response to DNA double-strand breaks. The importance of Rad50 in that response is evident from the recent description of a patient with Rad50 deficiency characterized by chromosomal instability and defective ATM-dependent signaling. We report here that ATM (defective in ataxia-telangiectasia) phosphorylates Rad50 at a single site (Ser-635) that plays an important adaptor role in signaling for cell cycle control and DNA repair. Although a Rad50 phosphosite-specific mutant (S635G) supported normal activation of ATM in Rad50-deficient cells, it was defective in correcting DNA damage-induced signaling through the ATM-dependent substrate SMC1. This mutant also failed to correct radiosensitivity, DNA double-strand break repair, and an S-phase checkpoint defect in Rad50-deficient cells. This was not due to disruption of the Mre11/Rad50/NBN complex revealing for the first time that phosphorylation of Rad50 plays a key regulatory role as an adaptor for specific ATM-dependent downstream signaling through SMC1 for DNA repair and cell cycle checkpoint control in the maintenance of genome integrity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Ciclo Celular , Proteínas Cromosómicas no Histona/fisiología , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ácido Anhídrido Hidrolasas , Ataxia Telangiectasia/patología , Proteínas de la Ataxia Telangiectasia Mutada , Enzimas Reparadoras del ADN/deficiencia , Proteínas de Unión al ADN/deficiencia , Inestabilidad Genómica , Humanos , Proteínas Mutantes , Fosforilación/fisiología , Tolerancia a Radiación , Fase S , Transducción de Señal
13.
J Cell Biol ; 177(2): 219-29, 2007 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-17438073

RESUMEN

The DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PK(CS) recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PK(CS) accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PK(CS) influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PK(CS) at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PK(CS) influence the stability of its binding to DNA ends. We suggest a model in which DNA-PK(CS) phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PK(CS) with the DNA ends.


Asunto(s)
Dominio Catalítico , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Animales , Antígenos Nucleares/metabolismo , Células CHO , Cricetinae , Cricetulus , ADN/metabolismo , Proteína Quinasa Activada por ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Autoantígeno Ku , Rayos Láser , Fosforilación , Fotoblanqueo
14.
Nucleic Acids Res ; 38(5): 1489-503, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20008512

RESUMEN

Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1, resolves abortive DNA ligation intermediates during DNA repair. Here, we demonstrate that aprataxin localizes at sites of DNA damage induced by high LET radiation and binds to mediator of DNA-damage checkpoint protein 1 (MDC1/NFBD1) through a phosphorylation-dependent interaction. This interaction is mediated via the aprataxin FHA domain and multiple casein kinase 2 di-phosphorylated S-D-T-D motifs in MDC1. X-ray structural and mutagenic analysis of aprataxin FHA domain, combined with modelling of the pSDpTD peptide interaction suggest an unusual FHA binding mechanism mediated by a cluster of basic residues at and around the canonical pT-docking site. Mutation of aprataxin FHA Arg29 prevented its interaction with MDC1 and recruitment to sites of DNA damage. These results indicate that aprataxin is involved not only in single strand break repair but also in the processing of a subset of double strand breaks presumably through its interaction with MDC1.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular , Línea Celular , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Transferencia Lineal de Energía , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Transactivadores/metabolismo
15.
Cells ; 11(16)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-36010636

RESUMEN

DNA double-strand breaks (DSBs) represent the molecular origin of ionizing-radiation inflicted biological effects. An increase in the ionization density causes more complex, clustered DSBs that can be processed by resection also in G1 phase, where repair of resected DSBs is considered erroneous and may contribute to the increased biological effectiveness of heavy ions in radiotherapy. To investigate the resection regulation of complex DSBs, we exposed G1 cells depleted for different candidate factors to heavy ions or α-particle radiation. Immunofluorescence microscopy was used to monitor the resection marker RPA, the DSB marker γH2AX and the cell-cycle markers CENP-F and geminin. The Fucci system allowed to select G1 cells, cell survival was measured by clonogenic assay. We show that in G1 phase the ubiquitin ligase RNF138 functions in resection regulation. RNF138 ubiquitinates the resection factor CtIP in a radiation-dependent manner to allow its DSB recruitment in G1 cells. At complex DSBs, RNF138's participation becomes more relevant, consistent with the observation that also resection is more frequent at these DSBs. Furthermore, deficiency of RNF138 affects both DSB repair and cell survival upon induction of complex DSBs. We conclude that RNF138 is a regulator of resection that is influenced by DSB complexity and can affect the quality of DSB repair in G1 cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/metabolismo , Ubiquitina , Proteínas Portadoras/genética , ADN , Fase G1/genética , Humanos , Ligasas , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
Front Oncol ; 12: 920017, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875130

RESUMEN

Aberrant activation of the phosphatidyl-inositol-3-kinase/protein kinase B (AKT) pathway has clinical relevance to radiation resistance, but the underlying mechanisms are incompletely understood. Protection against reactive oxygen species (ROS) plays an emerging role in the regulation of cell survival upon irradiation. AKT-dependent signaling participates in the regulation of cellular antioxidant defense. Here, we were interested to explore a yet unknown role of aberrant activation of AKT in regulating antioxidant defense in response to IR and associated radiation resistance. We combined genetic and pharmacologic approaches to study how aberrant activation of AKT impacts cell metabolism, antioxidant defense, and radiosensitivity. Therefore, we used TRAMPC1 (TrC1) prostate cancer cells overexpressing the clinically relevant AKT-variant AKT-E17K with increased AKT activity or wildtype AKT (AKT-WT) and analyzed the consequences of direct AKT inhibition (MK2206) and inhibition of AKT-dependent metabolic enzymes on the levels of cellular ROS, antioxidant capacity, metabolic state, short-term and long-term survival without and with irradiation. TrC1 cells expressing the clinically relevant AKT1-E17K variant were characterized by improved antioxidant defense compared to TrC1 AKT-WT cells and this was associated with increased radiation resistance. The underlying mechanisms involved AKT-dependent direct and indirect regulation of cellular levels of reduced glutathione (GSH). Pharmacologic inhibition of specific AKT-dependent metabolic enzymes supporting defense against oxidative stress, e.g., inhibition of glutathione synthase and glutathione reductase, improved eradication of clonogenic tumor cells, particularly of TrC1 cells overexpressing AKT-E17K. We conclude that improved capacity of TrC1 AKT-E17K cells to balance antioxidant defense with provision of energy and other metabolites upon irradiation compared to TrC1 AKT-WT cells contributes to their increased radiation resistance. Our findings on the importance of glutathione de novo synthesis and glutathione regeneration for radiation resistance of TrC1 AKT-E17K cells offer novel perspectives for improving radiosensitivity in cancer cells with aberrant AKT activity by combining IR with inhibitors targeting AKT-dependent regulation of GSH provision.

17.
J Gen Physiol ; 154(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35416945

RESUMEN

Radiation therapy efficiently eliminates cancer cells and reduces tumor growth. To understand collateral agonistic and antagonistic effects of this treatment on the immune system, we examined the impact of x-ray irradiation on human T cells. We find that, in a major population of leukemic Jurkat T cells and peripheral blood mononuclear cells, clinically relevant radiation doses trigger delayed oscillations of the cytosolic Ca2+ concentration. They are generated by store-operated Ca2+ entry (SOCE) following x-ray-induced clustering of Orai1 and STIM1 and formation of a Ca2+ release-activated Ca2+ (CRAC) channel. A consequence of the x-ray-triggered Ca2+ signaling cascade is translocation of the transcription factor nuclear factor of activated T cells (NFAT) from the cytosol into the nucleus, where it elicits the expression of genes required for immune activation. The data imply activation of blood immune cells by ionizing irradiation, with consequences for toxicity and therapeutic effects of radiation therapy.


Asunto(s)
Calcio , Leucocitos Mononucleares , Calcio/metabolismo , Señalización del Calcio/fisiología , Humanos , Inmunidad , Leucocitos Mononucleares/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Linfocitos T/metabolismo , Rayos X
18.
Hum Mol Genet ; 18(21): 4102-17, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19643912

RESUMEN

Aprataxin, defective in the neurodegenerative disorder ataxia oculomotor apraxia type 1 (AOA1), is a DNA repair protein that processes the product of abortive ligations, 5' adenylated DNA. In addition to its interaction with the single-strand break repair protein XRCC1, aprataxin also interacts with poly-ADP ribose polymerase 1 (PARP-1), a key player in the detection of DNA single-strand breaks. Here, we reveal reduced expression of PARP-1, apurinic endonuclease 1 (APE1) and OGG1 in AOA1 cells and demonstrate a requirement for PARP-1 in the recruitment of aprataxin to sites of DNA breaks. While inhibition of PARP activity did not affect aprataxin activity in vitro, it retarded its recruitment to sites of DNA damage in vivo. We also demonstrate the presence of elevated levels of oxidative DNA damage in AOA1 cells coupled with reduced base excision and gap filling repair efficiencies indicative of a synergy between aprataxin, PARP-1, APE-1 and OGG1 in the DNA damage response. These data support both direct and indirect modulating functions for aprataxin on base excision repair.


Asunto(s)
Daño del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Sitios de Unión , Línea Celular , Células Cultivadas , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Proteínas de Unión al ADN/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Immunoblotting , Ratones , Ratones Noqueados , Microscopía Confocal , Proteínas Nucleares/genética , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
19.
Sci Rep ; 10(1): 1443, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996740

RESUMEN

DNA double-strand break (DSB) repair is crucial to maintain genomic stability. The fidelity of the repair depends on the complexity of the lesion, with clustered DSBs being more difficult to repair than isolated breaks. Using live cell imaging of heavy ion tracks produced at a high-energy particle accelerator we visualised simultaneously the recruitment of different proteins at individual sites of complex and simple DSBs in human cells. NBS1 and 53BP1 were recruited in a few seconds to complex DSBs, but in 40% of the isolated DSBs the recruitment was delayed approximately 5 min. Using base excision repair (BER) inhibitors we demonstrate that some simple DSBs are generated by enzymatic processing of base damage, while BER did not affect the complex DSBs. The results show that DSB processing and repair kinetics are dependent on the complexity of the breaks and can be different even for the same clastogenic agent.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN/genética , Neoplasias/genética , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Iones Pesados , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Sincrotrones , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
20.
Radiother Oncol ; 129(3): 600-610, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30049456

RESUMEN

BACKGROUND AND PURPOSE: High linear-energy-transfer (LET) irradiation (IR) is characterized by unique depth-dose distribution and advantageous biologic effectiveness compared to low-LET-IR, offering promising alternatives for radio-resistant tumors in clinical oncology. While low-LET-IR induces single DNA lesions such as double-strand breaks (DSBs), localized energy deposition along high-LET particle trajectories induces clustered DNA lesions that are more challenging to repair. During DNA damage response (DDR) 53BP1 and ATM are required for Kap1-dependent chromatin relaxation, thereby sustaining heterochromatic DSB repair. Here, spatiotemporal dynamics of chromatin restructuring were visualized during DDR after high-LET and low-LET-IR. MATERIAL AND METHODS: Human fibroblasts were irradiated with high-LET carbon/calcium ions or low-LET photons. At 0.1 h, 0.5 h, 5 h and 24 h post-IR fluorophore- and gold-labeled repair factors (53BP1, pATM, pKAP-1, pKu70) were visualized by immunofluorescence and transmission electron microscopy, to monitor formation and repair of DNA damage in chromatin ultrastructure. To track chromatin remodeling at damage sites, decondensed regions (DCR) were delineated based on local chromatin concentration densities. RESULTS: Low-LET-IR induced single DNA lesions throughout the nucleus, but nearly all DSBs were efficiently rejoined without visible chromatin decompaction. High-LET-IR induced clustered DNA damage and triggered profound changes in chromatin structure along particle trajectories. In DCR multiple heterochromatic DSBs exhibited delayed repair despite cooperative activity of 53BP1, pATM, pKap-1. These closely localized DSBs may disturb efficient repair and subsequent chromatin restoration, thereby affecting large-scale genome organization. CONCLUSION: Clustered damage concentrated in particle trajectories causes persistent rearrangements in chromatin architecture, which may affect structural and functional organization of cell nuclei.


Asunto(s)
Cromatina/efectos de la radiación , Daño del ADN , Animales , Células Cultivadas , Cromatina/ultraestructura , Roturas del ADN de Doble Cadena , Reparación del ADN , Humanos , Autoantígeno Ku/análisis , Transferencia Lineal de Energía , Proteína 1 de Unión al Supresor Tumoral P53/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA