RESUMEN
BACKGROUND: The International Federation for Emergency Medicine (IFEM) published its model curriculum for medical student education in emergency medicine in 2009. Because of the evolving principles of emergency medicine and medical education, driven by societal, professional, and educational developments, there was a need for an update on IFEM recommendations. The main objective of the update process was creating Intended Learning Outcomes (ILOs) and providing tier-based recommendations. METHOD: A consensus methodology combining nominal group and modified Delphi methods was used. The nominal group had 15 members representing eight countries in six regions. The process began with a review of the 2009 curriculum by IFEM Core Curriculum and Education Committee (CCEC) members, followed by a three-phase update process involving survey creation [The final survey document included 55 items in 4 sections, namely, participant & context information (16 items), intended learning outcomes (6 items), principles unique to emergency medicine (20 items), and content unique to emergency medicine (13 items)], participant selection from IFEM member countries and survey implementation, and data analysis to create the recommendations. RESULTS: Out of 112 invitees (CCEC members and IFEM member country nominees), 57 (50.9%) participants from 27 countries participated. Eighteen (31.6%) participants were from LMICs, while 39 (68.4%) were from HICs. Forty-four (77.2%) participants have been involved with medical students' emergency medicine training for more than five years in their careers, and 56 (98.2%) have been involved with medical students' training in the last five years. Thirty-five (61.4%) participants have completed a form of training in medical education. The exercise resulted in the formulation of tiered ILO recommendations. Tier 1 ILOs are recommended for all medical schools, Tier 2 ILOs are recommended for medical schools based on perceived local healthcare system needs and/or adequate resources, and Tier 3 ILOs should be considered for medical schools based on perceived local healthcare system needs and/or adequate resources. CONCLUSION: The updated IFEM ILO recommendations are designed to be applicable across diverse educational and healthcare settings. These recommendations aim to provide a clear framework for medical schools to prepare graduates with essential emergency care capabilities immediately after completing medical school. The successful distribution and implementation of these recommendations hinge on support from faculty and administrators, ensuring that future healthcare professionals are well-prepared for emergency medical care.
RESUMEN
Reducing inspiratory flow rate and peak airway pressure may be important in order to minimise the risk of stomach inflation when ventilating an unprotected airway with positive pressure ventilation. This study was designed to yield enough power to determine whether employing an inspiratory gas flow limiting bag-valve device (SMART BAG, O-Two Medical Technologies Inc., Ontario, Canada) would also decrease the likelihood of stomach inflation in an established bench model of a simulated unintubated respiratory arrest patient. The bench model consists of a training lung (lung compliance, 50 ml/cm H2O; airway resistance, 4 cm H2O/l/s) and a valve simulating lower oesophageal sphincter opening at a pressure of 19 cm H(2)O. One hundred and ninety-one emergency medicine physicians were requested to ventilate the manikin utilising a standard single-person technique for 1 min (respiratory rate, 12/min; Vt, 500 ml) with both a standard adult bag-valve-mask and the SMART BAG. The volunteers were blinded to the experimental design of the model until completion of the experimental protocol. The SMART BAG versus standard bag-valve-mask resulted in significantly (P < 0.001) lower (mean +/- S.D.) mean airway pressure (14 +/- 2 cm H2O versus 16 +/- 3 cm H2O), respiratory rates (13 +/- 3 breaths per min versus 14 +/- 4 breaths per min), incidence of stomach inflation (4.2% versus 38.7%) and median stomach inflation volumes (351 [range, 18-1211 ml] versus 1426 [20-5882 ml]); lung tidal volumes (538 +/- 97 ml versus 533 +/- 97 ml) were comparable. Inspiratory to expiratory ratios were significantly (P < 0.001) increased (1.7 +/- 0.5 versus 1.5 +/- 0.6). In conclusion, the SMART BAG reduced inspiratory flow, mean airway pressure and both the incidence and actual volume of stomach inflation compared with a standard bag-valve-mask device while maintaining delivered lung tidal volumes and increasing the inspiratory to expiratory ratio.
Asunto(s)
Respiración Artificial/métodos , Diseño de Equipo , Humanos , Máscaras , Ápice del Flujo Espiratorio , Respiración Artificial/instrumentación , EstómagoRESUMEN
The article presents most important changes in international guidelines for adult cardiopulmonary resuscitation. In this article guideline changes in basic and advanced life support published in Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care--a Consensus on Science are discussed. Major changes in guidelines presented in this article include: pulse check, ventilation technique for rescue breathing, compression technique, abdominal thrust recommendations, precordial thump, universal algorithm changes.