Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Chem Soc Rev ; 52(18): 6417-6446, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37591800

RESUMEN

The degree of crystallinity in cellulose significantly affects the physical, mechanical, and chemical properties of cellulosic materials, their processing, and their final application. Measuring the crystalline structures of cellulose is a challenging task due to inadequate consistency among the variety of analytical techniques available and the lack of absolute crystalline and amorphous standards. Our article reviews the primary methods for estimating the crystallinity of cellulose, namely, X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Raman and Fourier-transform infrared (FTIR) spectroscopy, sum-frequency generation vibrational spectroscopy (SFG), as well as differential scanning calorimetry (DSC), and evolving biochemical methods using cellulose binding molecules (CBMs). The techniques are compared to better interrogate not only the requirements of each method, but also their differences, synergies, and limitations. The article highlights fundamental principles to guide the general community to initiate studies of the crystallinity of cellulosic materials.

2.
Environ Sci Technol ; 56(7): 4578-4586, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35274948

RESUMEN

Dissolving pulp (DP) is a specialty pulp product from a variety of lignocellulosic biomass (i.e., hardwoods (HW) and softwoods (SW)) with a broad range of applications. Conducting life cycle assessment (LCA) for DP end applications (e.g., textile products, specialty plastics) is challenging due to the lack of life cycle inventory (LCI) data and environmental information associated with different grades. This research addresses this challenge using process simulations to generate LCI for different DP grades (e.g., acetate and viscose) made from HW and SW, respectively. The LCA results show that biomass feedstock directly affects the environmental impacts of DP. For instance, HW acetate grade has higher global warming potential than SW acetate but lower environmental impacts in other categories related to ecosystems and human health. This HW versus SW comparison has similar results for viscose DP in all impact categories except eutrophication. Additionally, a hotspot analysis identifies that on-site emissions and chemicals are the main contributors to the environmental impacts across all grades in this study. The results and LCI data generated in this work provide critical information to support future LCA and sustainability assessment for end-products derived from DP.


Asunto(s)
Ecosistema , Calentamiento Global , Animales , Ambiente , Eutrofización , Humanos , Estadios del Ciclo de Vida
3.
Biotechnol Bioeng ; 117(4): 924-932, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31885079

RESUMEN

Mechanical refining results in fiber deconstruction and modifications that enhance enzyme accessibility to carbohydrates. Further understanding of the morphological changes occurring to biomass during mechanical refining and the impacts of these changes on enzymatic digestibility is necessary to maximize yields and reduce energy consumption. Although the degree of fiber length reduction relative to fibrillation/delamination can be impacted by manipulating refining variables, mechanical refining of any type (PFI, disk, and valley beater) typically results in both phenomena. Separating the two is not straightforward. In this study, fiber fractionation based on particle size performed after mechanical refining of high-lignin pulp was utilized to successfully elucidate the relative impact of fibrillation/delamination and fiber cutting phenomena during mechanical refining. Compositional analysis showed that fines contain significantly more lignin than larger size fractions. Enzymatic hydrolysis results indicated that within fractions of uniform fiber length, fibrillation/delamination due to mechanical refining increased enzymatic conversion by 20-30 percentage points. Changes in fiber length had little effect on digestibility for fibers longer than ~0.5 mm. However, the digestibility of the fines fractions was high for all levels of refining even with the high-lignin content.


Asunto(s)
Biomasa , Celulasa/metabolismo , Lignina , Madera , Fraccionamiento Químico , Hidrólisis , Lignina/análisis , Lignina/química , Lignina/metabolismo , Madera/análisis , Madera/química , Madera/metabolismo
4.
Langmuir ; 35(1): 104-112, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30472858

RESUMEN

A heightened need to control the spread of infectious diseases prompted the current work in which functionalized and innovative antimicrobial tissue paper was developed with a hydrophobic spray-coating of chitosan (Ch) and cellulose nanocrystals (CNCs) composite. It was hypothesized that the hydrophobic nature of chitosan could be counterbalanced by the addition of CNC to maintain fiber formation and water absorbency. Light-weight tissue handsheets were prepared, spray-coated with Ch, CNC, and their composite coating (ChCNC), and tested for antimicrobial activity against Gram-negative bacteria Escherichia coli and a microbial sample from a human hand after using the rest room. Water absorption and strength properties were also analyzed. To activate the surface of cationized tissue paper, an oxygen/helium gas atmospheric plasma treatment was employed on the best performing antimicrobial tissue papers. The highest bactericidal activity was observed with ChCNC-coated tissue paper, inhibiting up to 98% microbial growth. Plasma treatment further improved the antimicrobial activity of the coatings. Water absorption properties were reduced with Ch but increased with CNC. This "self-disinfecting" bactericidal tissue has the potential to be one of the most innovative products for the hygiene industry because it can dry, clean, and resist the infection of surfaces simultaneously, providing significant societal benefits.


Asunto(s)
Antibacterianos/farmacología , Celulosa/farmacología , Quitosano/farmacología , Nanocompuestos/química , Papel , Antibacterianos/química , Bacterias/efectos de los fármacos , Celulosa/química , Quitosano/química , Resistencia Flexional , Humanos , Nanopartículas/química , Agua/química
5.
J Environ Manage ; 231: 757-762, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30408769

RESUMEN

The importance of water pollutants on human health has been the subject of intense study and constitutes perhaps the most significant grand challenge for the future of human society. Water remediation faces many challenges in effectively combating pollution, especially for low income populations where poor water sanitation and little to no access to technically competent and cost effective remediation are nearly insurmountable issues. In an effort to provide low-cost adsorbents, research over the last few years has focused on biological residual materials from plants and animal biomass to not only to add value, but to remediate water at a lower cost with the same or improved efficiency as commercially available option. Crustacean shells are among a class of biological residues that are commonly treated as a waste product of the sea food industry. However, potential valorization by remediation of heavy metal ions, organic matter, and anionic species is a topic of high interest in the current eco-friendly environment. The aim of this review is to provide insight on the state of the art of crustacean shells for addressing water remediation and to offer some perspective regarding challenges and the future of this type of biomass.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Animales , Biomasa , Contaminación Ambiental , Humanos , Agua
6.
Biomacromolecules ; 16(12): 3878-88, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26565921

RESUMEN

Understanding enzyme-substrate interactions is critical in designing strategies for bioconversion of lignocellulosic biomass. In this study we monitored molecular events, in situ and in real time, including the adsorption and desorption of cellulolytic enzymes on lignins and cellulose, by using quartz crystal microgravimetry and surface plasmon resonance. The effect of a nonionic surface active molecule was also elucidated. Three lignin substrates relevant to the sugar platform in biorefinery efforts were considered, namely, hardwood autohydrolysis cellulolytic (HWAH), hardwood native cellulolytic (MPCEL), and nonwood native cellulolytic (WSCEL) lignin. In addition, Kraft lignins derived from softwoods (SWK) and hardwoods (HWK) were used as references. The results indicated a high affinity between the lignins with both, monocomponent and multicomponent enzymes. More importantly, the addition of nonionic surfactants at concentrations above their critical micelle concentration reduced remarkably (by over 90%) the nonproductive interactions between the cellulolytic enzymes and the lignins. This effect was hypothesized to be a consequence of the balance of hydrophobic and hydrogen bonding interactions. Moreover, the reduction of surface roughness and increased wettability of lignin surfaces upon surfactant treatment contributed to a lower affinity with the enzymes. Conformational changes of cellulases were observed upon their adsorption on lignin carrying preadsorbed surfactant. Weak electrostatic interactions were determined in aqueous media at pH between 4.8 and 5.5 for the native cellulolytic lignins (MPCEL and WSCEL), whereby a ∼20% reduction in the enzyme affinity was observed. This was mainly explained by electrostatic interactions (osmotic pressure effects) between charged lignins and cellulases. Noteworthy, adsorption of nonionic surfactants onto cellulose, in the form cellulose nanofibrils, did not affect its hydrolytic conversion. Overall, our results highlight the benefit of nonionic surfactant pretreatment to reduce nonproductive enzyme binding while maintaining the reactivity of the cellulosic substrate.


Asunto(s)
Celulasas/química , Lignina/química , Polisorbatos/química , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Conformación Proteica , Tecnicas de Microbalanza del Cristal de Cuarzo , Electricidad Estática , Resonancia por Plasmón de Superficie
7.
Heliyon ; 9(3): e14122, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36950652

RESUMEN

Lignocellulosic materials are widely used for food packaging due to their renewable and biodegradable nature. However, their porous and absorptive properties can lead to the uptake and retention of bacteria during food processing, transportation, and storage, which pose a potential risk for outbreaks of foodborne disease. Thus, it is of great importance to understand how bacteria proliferate and survive on lignocellulosic surfaces. The aim of this research was to compare the growth and survivability of Salmonella Typhimurium and Listeria innocua on bleached and unbleached paper packaging materials. Two different paper materials were fabricated to simulate linerboard from fully bleached and unbleached market pulps and inoculated with each bacterium at high bacterial loads (107 CFU). The bacteria propagated during the first 48 h of incubation and persisted at very high levels (>107 CFU/cm2) for 40 days for all paper and bacterium types. However, the unbleached paper allowed for a greater degree of bacterial growth to occur compared to bleached paper, suspected to be due to the more hydrophobic nature of the unbleached, lignin-containing fibers. Several other considerations may also alter the behavior of bacteria on lignocellulosic materials, such as storage conditions, nutrient availability, and chemical composition of the fibers.

8.
Science ; 381(6654): 216-221, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37440632

RESUMEN

The domestication of forest trees for a more sustainable fiber bioeconomy has long been hindered by the complexity and plasticity of lignin, a biopolymer in wood that is recalcitrant to chemical and enzymatic degradation. Here, we show that multiplex CRISPR editing enables precise woody feedstock design for combinatorial improvement of lignin composition and wood properties. By assessing every possible combination of 69,123 multigenic editing strategies for 21 lignin biosynthesis genes, we deduced seven different genome editing strategies targeting the concurrent alteration of up to six genes and produced 174 edited poplar variants. CRISPR editing increased the wood carbohydrate-to-lignin ratio up to 228% that of wild type, leading to more-efficient fiber pulping. The edited wood alleviates a major fiber-production bottleneck regardless of changes in tree growth rate and could bring unprecedented operational efficiencies, bioeconomic opportunities, and environmental benefits.


Asunto(s)
Edición Génica , Lignina , Populus , Madera , Carbohidratos/análisis , Lignina/genética , Madera/genética , Sistemas CRISPR-Cas , Populus/genética , Papel , Crecimiento Sostenible
9.
Biotechnol Bioeng ; 109(5): 1131-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22125215

RESUMEN

Multi-stage and single-stage enzymatic hydrolysis of cellulose (Avicel PH-101) were conducted to investigate individual factors that affect the rate-reducing kinetics of enzymatic hydrolysis. Understanding factors affecting enzymatic hydrolysis of Avicel will help improve hydrolysis of various biomasses. Product inhibition, enzyme deactivation, and the changes of substrate are potential factors that can affect the hydrolysis efficiency of Avicel. Multi-stage enzymatic hydrolysis resulted in 36.9% and 25.4% higher carbohydrate conversion as compared to a single-stage enzymatic hydrolysis with an enzyme loading of 5 and 20 FPU/g in a 96 h reaction. However, a decline in carbohydrate conversion of 1.6% and 2.6% was observed through each stage with 5 and 20 FPU/g, respectively. This indicated that the substrate became more recalcitrant as hydrolysis progressed. The decreased reactivity was not due to crystallinity because no significant change in crystallinity was detected by X-ray diffraction. Product inhibition was significant at low enzyme loading, while it was marginal at high enzyme loading. Therefore, product inhibition can only partially explain this decreased conversion. Another important factor, enzyme deactivation, contributed to 20.3% and 25.4% decrease in the total carbohydrate conversion of 96 h hydrolysis with 5 and 20 FPU/g, respectively. This work shows that an important reason for the decreased Avicel digestibility is the effect of enzyme blockage, which refers to the enzymes that irreversibly adsorb on accessible sites of substrate. About 45.3% and 63.2% of the total decreased conversion at the end of the 8th stage with 5 and 20 FPU/g, respectively, was due to the presence of irreversibly adsorbed enzymes. This blockage of active sites by enzymes has been speculated by other researchers, but this article shows further evidence of this effect.


Asunto(s)
Celulasas/metabolismo , Celulosa/metabolismo , Inhibidores Enzimáticos/metabolismo , Hidrólisis , Cinética
10.
Carbohydr Polym ; 295: 119856, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35989003

RESUMEN

Cellulosic fiber collapse is a phenomenon of fundamental importance for many technologies that include tissue/hygiene to packaging because it governs their essential materials properties such as tensile strength, softness, and water absorption; therefore, we elaborate cellulose fiber collapse from water interactions. This is the first attempt to directly correlate fiber collapse and entrapped or hard-to-remove (HR) water content through DSC, TGA and SEM. Freeze-drying and oven drying were individually investigated for influence on collapse. SEM of the fibers at different moisture contents show that irreversible collapsing begins as entrapped water departs the fiber surface. The removal of HR water pulls cell walls closer due to strong capillary action which overwhelms the elastic force of the fiber lumen which results in partially or fully irreversible collapse. The initial moisture content and refining intensity were found to regulate HR water content and consequently played a vital role in fiber collapsing.


Asunto(s)
Celulosa , Agua , Desecación , Fibras de la Dieta , Liofilización/métodos , Resistencia a la Tracción
11.
Planta ; 233(6): 1097-110, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21298285

RESUMEN

A quantitative approach to characterize lignin-carbohydrate complex (LCC) linkages using a combination of quantitative ¹³C NMR and HSQC 2D NMR techniques has been developed. Crude milled wood lignin (MWLc), LCC extracted from MWLc with acetic acid (LCC-AcOH) and cellulolytic enzyme lignin (CEL) preparations were isolated from loblolly pine (Pinus taeda) and white birch (Betula pendula) woods and characterized using this methodology on a routine 300 MHz NMR spectrometer and on a 950 MHz spectrometer equipped with a cryogenic probe. Structural variations in the pine and birch LCC preparations of different types (MWL, CEL and LCC-AcOH) were elucidated. The use of the high field NMR spectrometer equipped with the cryogenic probe resulted in a remarkable improvement in the resolution of the LCC signals and, therefore, is of primary importance for an accurate quantification of LCC linkages. The preparations investigated showed the presence of different amounts of benzyl ether, γ-ester and phenyl glycoside LCC bonds. Benzyl ester moieties were not detected. Pine LCC-AcOH and birch MWLc preparations were preferable for the analysis of phenyl glycoside and ester LCC linkages in pine and birch, correspondingly, whereas CEL preparations were the best to study benzyl ether LCC structures. The data obtained indicate that pinewood contains higher amounts of benzyl ether LCC linkages, but lower amounts of phenyl glycoside and γ-ester LCC moieties as compared to birch wood.


Asunto(s)
Betula/química , Carbohidratos/química , Lignina/química , Pinus taeda/química , Betula/metabolismo , Conformación de Carbohidratos , Metabolismo de los Hidratos de Carbono , Lignina/metabolismo , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , Pinus taeda/metabolismo , Madera/química
12.
Glob Chall ; 5(2): 2000065, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33552552

RESUMEN

The sustainable development of lignocellulose fibers exhibits significant potential to supplant synthetic polymer feedstocks and offers a global platform for generating sustainable packaging, bioplastics, sanitary towels, wipes, and related products. The current research explores the dynamics of fiber production from wood, non-wood, and agro-residues using carbonate hydrolysis and a mild kraft process without bleaching agents. With respect to carbonate hydrolysis, high yield, and good coarseness fibers are attained using a simple, low-cost, and ecofriendly process. Fibers produced using a mild kraft process have lower Klason lignin, carboxyl content, surface charges, and higher fiber length, and crystallinity. Eucalyptus fibers show the highest crystallinity while softwood carbonate fibers show the lowest crystallinity. Hemp hurd fibers contain the highest concentration of hard-to-remove water, and thus, suffer maximum flattening visualized by the microscopic images. The relatively high yield sustainable fibers with versatile properties can provide a significant economic benefit since fiber is the dominant cost for producing various bioproducts to meet society's current and future needs.

13.
Carbohydr Polym ; 254: 117430, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33357905

RESUMEN

This study aims to understand the effect of micro- and nanofibrillated cellulose (MNFC) on the tensile index, softness, and water absorbency of tissue paper. MNFC was produced from four different fiber sources. The results show that MNFC acts as an effective strength enhancer at the expense of a reduced water absorbency and softness. The impact of the fiber source on MNFC manufacturing cost and the trade-off with performance was also investigated. MNFCs produced from southern bleached hardwood kraft, northern bleached softwood kraft, and deinked pulp exhibited similar performance trends with the MNFC from the deinked pulp having a significantly lower cost. This suggests that MNFCs with similar degrees of fibrillation may be used interchangeably regardless of the fiber source, revealing the possibility to minimize MNFC manufacturing costs based on fiber selection. MNFC produced from bleached Eucalyptus kraft showed the lowest degree of fibrillation and the lowest strength improvements among the MNFCs evaluated.


Asunto(s)
Celulosa/química , Eucalyptus/química , Nanofibras/química , Papel , Madera/química , Celulosa/aislamiento & purificación , Humanos , Hidrólisis , Higiene , Ensayo de Materiales , Humectabilidad
14.
RSC Adv ; 10(71): 43282-43289, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-35519667

RESUMEN

A deicing agent from renewable resources is necessary to overcome the disadvantages of traditional deicing agents. In this study, biomass autohydrolyzate was evaluated for its applicability as corrosion inhibiting deicing agents. Autohydrolyzates treated with alkali showed significant freezing point depression and corrosion inhibiting effects on mild steel. Freezing points for autohydrolyzate treated with 2% (w/w) sodium hydroxide were depressed at -64.0 °C (56% solids content), and its maximum corrosion inhibiting efficiency was 61.5%. This material was found to be more effective than a tested commercial deicing agent. This strong performance is considered due to the xylooligosaccharides being degraded to various sugar acid compounds under alkaline treatment conditions, providing the mixture with solutes with corrosion inhibition potency. In conclusion, alkaline treated autohydrolyzate could replace traditional deicing agents based on superior performance and a sustainable production scheme.

15.
Polymers (Basel) ; 12(8)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796539

RESUMEN

Lignin is an abundant, renewable, and relatively cheap biobased feedstock that has potential in energy, chemicals, and materials. Kraft lignin, more specifically, has been used for more than 100 years as a self-sustaining energy feedstock for industry after which it has finally reached more widespread commercial appeal. Unfortunately, hardwood kraft lignin (HWKL) has been neglected over these years when compared to softwood kraft lignin (SWKL). Therefore, the present work summarizes and critically reviews the research and development (R&D) dealing specifically with HWKL. It will also cover methods for HWKL extraction from black liquor, as well as its structure, properties, fractionation, and modification. Finally, it will reveal several interesting opportunities for HWKL that include dispersants, adsorbents, antioxidants, aromatic compounds (chemicals), and additives in briquettes, pellets, hydrogels, carbon fibers and polymer blends and composites. HWKL shows great potential for all these applications, however more R&D is needed to make its utilization economically feasible and reach the levels in the commercial lignin market commensurate with SWKL. The motivation for this critical review is to galvanize further studies, especially increased understandings in the field of HWKL, and hence amplify much greater utilization.

16.
ACS Appl Bio Mater ; 3(8): 5007-5019, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021678

RESUMEN

Rational spatiotemporal irradiation of cellulose-based hydrogels (carboxymethylcellulose (CMC), citric acid, and riboflavin) using a laser diode stereolithography 3D printer obtained architectures referred to as photodegradation addressable hydrogels (PAHs). Under irradiation, these PAHs engage in an unprecedented spatially resolved zonal swelling illustrating marked but controllable changes in swelling and thickness while concomitantly obtaining improved oxygen transmission rate values by 5 times. XPS, carboxyl content, and swelling data comparisons of hydrogel formulations show that photodegradation and ablation of the material occur, where hydroxyl sites of CMC are converted to aldehydes and ketones. XRD data show that the total number of crystalline aggregates in the material are lowered after photoablation. The spatially tuned (photoablated) hydrogel films can thus be shaped into a lens form. The energy required for the lens tuning process can be lowered up to 30 times by incorporation of riboflavin in the films. The method demonstrated here enables the processing of a material that is difficult to be machined or cast by popular contact lens making methods.

17.
RSC Adv ; 10(71): 43599-43606, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-35519679

RESUMEN

Efficient cleavage of aryl-ether linkages is a key strategy for generating aromatic chemicals and fuels from lignin. Currently, a popular method to depolymerize native/technical lignin employs a combination of Lewis acid and hydrogenation metal. However, a clear mechanistic understanding of the process is lacking. Thus, a more thorough understanding of the mechanism of lignin depolymerization in this system is essential. Herein, we propose a detailed mechanistic study conducted with lignin model compounds (LMC) via a synergistic Co-Zn/Off-Al H-beta catalyst that mirrors the hydrogenolysis process of lignin. The results suggest that the main reaction paths for the phenolic dimers exhibiting α-O-4 and ß-O-4 ether linkages are the cleavage of aryl-ether linkages. Particularly, the conversion was readily completed using a Co-Zn/Off-Al H-beta catalyst, but 40% of α-O-4 was converted and ß-O-4 did not react in the absence of a catalyst under the same conditions. In addition, it was found that the presence of hydroxyl groups on the side chain, commonly found in native lignin, greatly promotes the cleavage of aryl-ether linkages activated by Zn Lewis acid, which was attributed to the adsorption between Zn and the hydroxyl group. Followed by the cobalt catalyzed hydrogenation reaction, the phenolic dimers are degraded into monomers that maintain aromaticity.

18.
ChemSusChem ; 13(17): 4613-4623, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32452146

RESUMEN

Changes to the molecular properties of lignin over the course of biorefinery processing were investigated by using sweetgum as a feedstock. Hydrothermal pretreatment has been used because it is an economically attractive, green process. Three representative biorefinery lignin preparations were obtained, with about 70 % yield based on raw lignin. The three fractions included soluble lignin adsorbed on resin (XADL), solvent-extracted lignin (HTCELp), and an additional ball-milled residual lignin (HTRELp). By comparing the raw and biorefinery lignin preparations, it can be concluded that lignin undergoes both degradation and condensation throughout the various stages of the hydrothermal-based biorefinery process. The two fractions made soluble by biorefinery processing, XADL and HTCELp, were found to be low-molecular-weight degradation products enriched with free phenolic hydroxyl groups. In addition, about 15 % of noncondensed phenolic units were involved in condensation reactions. Quantitative NMR spectroscopy analysis revealed that at least about 28 % of ß-O-4' substructures were cleaved. Hibbert's ketones were identified in XADL and HTRELp, which provided evidence of lignin undergoing acidolysis. The contents of ß-5' and ß-ß' did not change significantly upon biorefinery processing. Finally, episyringaresinol was detected in XADL and HTCELp. It is hoped that these findings will help to further demonstrate the specific effects of biorefinery processing on lignin in hardwood and facilitate its utilization to improve biorefinery economics.

19.
Bioresour Technol ; 297: 122493, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31836278

RESUMEN

The decarbonization of agriculture faces many challenges and has received a level of attention insufficient to abate the worst effects of climate change and ensure a sustainable bioeconomy. Agricultural emissions are caused both by fossil-intensive fertilizer use and land-use change, which in turn are driven in part by increasing demand for dietary protein. To address this challenge, we present a synergistic system in which organic waste-derived biogas (a mixture of methane and carbon dioxide) is converted to dietary protein and ammonia fertilizer. This system produces low-carbon fertilizer inputs alongside high-quality protein, addressing the primary drivers of agricultural emissions. If the proposed system were implemented across the United States utilizing readily available organic waste from municipal wastewater, landfills, animal manure, and commercial operations, we estimate 30% of dietary protein intake and 127% of ammonia usage could be displaced while reducing land use, water consumption, and greenhouse gas emissions.


Asunto(s)
Fertilizantes , Estiércol , Agricultura , Amoníaco , Animales , Proteínas en la Dieta , Efecto Invernadero , Metano
20.
Bioresour Technol ; 276: 140-145, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30623868

RESUMEN

Modified autohydrolysis combined with mechanical refining has been suggested to recover free sugars from sweet sorghum bagasse and facilitates enzyme access to cellulose in bagasse for enhancing its conversion to fermentable sugars. The amount of total available sugars in sweet sorghum bagasse was found to be 76.1% and this value was used to evaluate the efficiency of the process suggested. Total sugar recovery was achieved up to 68.1% through the single-stage autohydrolysis at 170 °C for 60 min, followed by mechanical refining and enzymatic hydrolysis; however, the sugar recovery through partial degradation of free sugars induced by high-temperature autohydrolysis was lower than expected. A modified two-stage autohydrolysis was suggested to prevent sugar degradation and the total sugar recovery using this process reached 83.9% of total available sugars in sweet sorghum bagasse.


Asunto(s)
Celulosa/metabolismo , Sorghum/metabolismo , Azúcares/metabolismo , Fermentación , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA