Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant J ; 112(1): 84-103, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35916711

RESUMEN

Loss-of-function alleles of plant MLO genes confer broad-spectrum resistance to powdery mildews in many eudicot and monocot species. Although barley (Hordeum vulgare) mlo mutants have been used in agriculture for more than 40 years, understanding of the molecular principles underlying this type of disease resistance remains fragmentary. Forward genetic screens in barley have revealed mutations in two Required for mlo resistance (Ror) genes that partially impair immunity conferred by mlo mutants. While Ror2 encodes a soluble N-ethylmaleimide-sensitive factor-attached protein receptor (SNARE), the identity of Ror1, located at the pericentromeric region of barley chromosome 1H, remained elusive. We report the identification of Ror1 based on combined barley genomic sequence information and transcriptomic data from ror1 mutant plants. Ror1 encodes the barley class XI myosin Myo11A (HORVU.MOREX.r3.1HG0046420). Single amino acid substitutions of this myosin, deduced from non-functional ror1 mutant alleles, map to the nucleotide-binding region and the interface between the relay-helix and the converter domain of the motor protein. Ror1 myosin accumulates transiently in the course of powdery mildew infection. Functional fluorophore-labeled Ror1 variants associate with mobile intracellular compartments that partially colocalize with peroxisomes. Single-cell expression of the Ror1 tail region causes a dominant-negative effect that phenocopies ror1 loss-of-function mutants. We define a myosin motor for the establishment of mlo-mediated resistance, suggesting that motor protein-driven intracellular transport processes are critical for extracellular immunity, possibly through the targeted transfer of antifungal and/or cell wall cargoes to pathogen contact sites.


Asunto(s)
Hordeum , Antifúngicos , Hordeum/genética , Hordeum/metabolismo , Miosinas/genética , Miosinas/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Nucleótidos/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas SNARE/metabolismo
2.
Plant Cell ; 28(1): 87-101, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26721861

RESUMEN

In multicellular organisms, Polycomb Repressive Complex 1 (PRC1) and PRC2 repress target genes through histone modification and chromatin compaction. Arabidopsis thaliana mutants strongly compromised in the pathway cannot develop differentiated organs. LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is so far the only known plant PRC1 component that directly binds to H3K27me3, the histone modification set by PRC2, and also associates genome-wide with trimethylation of lysine 27 of histone H3 (H3K27me3). Surprisingly, lhp1 mutants show relatively mild phenotypic alterations. To explain this paradox, we screened for genetic enhancers of lhp1 mutants to identify novel components repressing target genes together with, or in parallel to, LHP1. Two enhancing mutations were mapped to TELOMERE REPEAT BINDING PROTEIN1 (TRB1) and its paralog TRB3. We show that TRB1 binds to thousands of genomic sites containing telobox or related cis-elements with a significant increase of sites and strength of binding in the lhp1 background. Furthermore, in combination with lhp1, but not alone, trb1 mutants show increased transcription of LHP1 targets, such as floral meristem identity genes, which are more likely to be bound by TRB1 in the lhp1 background. By contrast, expression of a subset of LHP1-independent TRB1 target genes, many involved in primary metabolism, is decreased in the absence of TRB1 alone. Thus, TRB1 is a bivalent transcriptional modulator that maintains downregulation of Polycomb Group (PcG) target genes in lhp1 mutants, while it sustains high expression of targets that are regulated independently of PcG.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas del Grupo Polycomb/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Transcripción Genética , Alelos , Secuencias de Aminoácidos , Proteínas de Arabidopsis/genética , Sitios de Unión , Genes del Desarrollo , Meristema/genética , Modelos Biológicos , Familia de Multigenes , Mutación/genética , Fenotipo , Fotosíntesis/genética , Unión Proteica/genética , Plantones/genética , Telómero/metabolismo
3.
PLoS Genet ; 12(4): e1005990, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27082651

RESUMEN

Plants have a large panel of nucleotide-binding/leucine rich repeat (NLR) immune receptors which monitor host interference by diverse pathogen molecules (effectors) and trigger disease resistance pathways. NLR receptor systems are necessarily under tight control to mitigate the trade-off between induced defenses and growth. Hence, mis-regulated NLRs often cause autoimmunity associated with stunting and, in severe cases, necrosis. Nucleocytoplasmic ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) is indispensable for effector-triggered and autoimmune responses governed by a family of Toll-Interleukin1-Receptor-related NLR receptors (TNLs). EDS1 operates coincidently or immediately downstream of TNL activation to transcriptionally reprogram cells for defense. We show here that low levels of nuclear-enforced EDS1 are sufficient for pathogen resistance in Arabidopsis thaliana, without causing negative effects. Plants expressing higher nuclear EDS1 amounts have the genetic, phenotypic and transcriptional hallmarks of TNL autoimmunity. In a screen for genetic suppressors of nuclear EDS1 autoimmunity, we map multiple, independent mutations to one gene, DM2h, lying within the polymorphic DANGEROUS MIX2 cluster of TNL RPP1-like genes from A. thaliana accession Landsberg erecta (Ler). The DM2 locus is a known hotspot for deleterious epistatic interactions leading to immune-related incompatibilities between A. thaliana natural accessions. We find that DM2hLer underlies two further genetic incompatibilities involving the RPP1-likeLer locus and EDS1. We conclude that the DM2hLer TNL protein and nuclear EDS1 cooperate, directly or indirectly, to drive cells into an immune response at the expense of growth. A further conclusion is that regulating the available EDS1 nuclear pool is fundamental for maintaining homeostatic control of TNL immune pathways.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Autoinmunidad/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Proteínas de Arabidopsis/inmunología , Autoinmunidad/inmunología , Hidrolasas de Éster Carboxílico/genética , Proteínas de Unión al ADN/inmunología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Eliminación de Secuencia/genética
4.
PLoS Genet ; 11(12): e1005660, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26642436

RESUMEN

The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits PcG silencing by blocking the interaction of the core PRC2 with accessory components that promote its HMTase activity or its role in inhibiting transcription. ALP1 is the first example of a domesticated transposase acquiring a novel function as a PcG component. The antagonistic interaction of a modified transposase with the PcG machinery is novel and may have arisen as a means for the cognate transposon to evade host surveillance or for the host to exploit features of the transposition machinery beneficial for epigenetic regulation of gene activity.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Filogenia , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Plantones/genética , Transposasas/biosíntesis , Transposasas/genética
6.
Plant Physiol ; 160(2): 591-600, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22837357

RESUMEN

Mapping-by-sequencing (or SHOREmapping) has revitalized the powerful concept of forward genetic screens in plants. However, as in conventional genetic mapping approaches, mapping-by-sequencing requires phenotyping of mapping populations established from crosses between two diverged accessions. In addition to the segregation of the focal phenotype, this introduces natural phenotypic variation, which can interfere with the recognition of quantitative phenotypes. Here, we demonstrate how mapping-by-sequencing and candidate gene identification can be performed within the same genetic background using only mutagen-induced changes as segregating markers. Using a previously unknown suppressor of mutants of like heterochromatin protein1 (lhp1), which in its functional form is involved in chromatin-mediated gene repression, we identified three closely linked ethyl methanesulfonate-induced changes as putative candidates. In order to assess allele frequency differences between such closely linked mutations, we introduced deep candidate resequencing using the new Ion Torrent Personal Genome Machine sequencing platform to our mutant identification pipeline and thereby reduced the number of causal candidate mutations to only one. Genetic analysis of two independent additional alleles confirmed that this mutation was causal for the suppression of lhp1.


Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico/métodos , Genes de Plantas , Mutagénesis , Alelos , Secuencia de Aminoácidos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cruzamientos Genéticos , Elementos Transponibles de ADN , Metanosulfonato de Etilo , Flores/genética , Flores/fisiología , Frecuencia de los Genes , Prueba de Complementación Genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Mutación , Fenotipo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Factores de Tiempo
7.
Curr Biol ; 28(2): 303-310.e3, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29337075

RESUMEN

Thermomorphogenesis is defined as the suite of morphological changes that together are likely to contribute to adaptive growth acclimation to usually elevated ambient temperature [1, 2]. While many details of warmth-induced signal transduction are still elusive, parallels to light signaling recently became obvious (reviewed in [3]). It involves photoreceptors that can also sense changes in ambient temperature [3-5] and act, for example, by repressing protein activity of the central integrator of temperature information PHYTOCHROME-INTERACTING FACTOR 4 (PIF4 [6]). In addition, PIF4 transcript accumulation is tightly controlled by the evening complex member EARLY FLOWERING 3 [7, 8]. According to the current understanding, PIF4 activates growth-promoting genes directly but also via inducing auxin biosynthesis and signaling, resulting in cell elongation. Based on a mutagenesis screen in the model plant Arabidopsis thaliana for mutants with defects in temperature-induced hypocotyl elongation, we show here that both PIF4 and auxin function depend on brassinosteroids. Genetic and pharmacological analyses place brassinosteroids downstream of PIF4 and auxin. We found that brassinosteroids act via the transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), which accumulates in the nucleus at high temperature, where it induces expression of growth-promoting genes. Furthermore, we show that at elevated temperature BZR1 binds to the promoter of PIF4, inducing its expression. These findings suggest that BZR1 functions in an amplifying feedforward loop involved in PIF4 activation. Although numerous negative regulators of PIF4 have been described, we identify BZR1 here as a true temperature-dependent positive regulator of PIF4, acting as a major growth coordinator.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Brasinoesteroides/metabolismo , Proteínas Nucleares/genética , Desarrollo de la Planta/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN , Calor , Proteínas Nucleares/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
8.
Nat Plants ; 1: 14023, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-27246759

RESUMEN

Despite evolutionary conserved mechanisms to silence transposable element activity, there are drastic differences in the abundance of transposable elements even among closely related plant species. We conducted a de novo assembly for the 375 Mb genome of the perennial model plant, Arabis alpina. Analysing this genome revealed long-lasting and recent transposable element activity predominately driven by Gypsy long terminal repeat retrotransposons, which extended the low-recombining pericentromeres and transformed large formerly euchromatic regions into repeat-rich pericentromeric regions. This reduced capacity for long terminal repeat retrotransposon silencing and removal in A. alpina co-occurs with unexpectedly low levels of DNA methylation. Most remarkably, the striking reduction of symmetrical CG and CHG methylation suggests weakened DNA methylation maintenance in A. alpina compared with Arabidopsis thaliana. Phylogenetic analyses indicate a highly dynamic evolution of some components of methylation maintenance machinery that might be related to the unique methylation in A. alpina.

9.
Cell Rep ; 9(6): 1983-9, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25533339

RESUMEN

Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH) transcription factor phytochrome interacting factor 4 (PIF4) coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is currently not understood how temperature regulates PIF4 activity. Using a forward genetic approach in Arabidopsis thaliana, we present extensive genetic evidence demonstrating that the de-etiolated 1 (DET1)-constitutive photomorphogenic 1 (COP1)-elongated hypocotyl 5 (HY5)-dependent photomorphogenesis pathway transcriptionally regulates PIF4 to coordinate seedling growth in response to elevated temperature. Our findings demonstrate that two of the most prevalent environmental cues, light and temperature, share a much larger set of signaling components than previously assumed. Similar to the toolbox concept in animal embryonic patterning, multipurpose signaling modules might have evolved in plants to translate various environmental stimuli into adaptational growth processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Etiolado , Proteínas Nucleares/metabolismo , Organogénesis de las Plantas , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligasas/genética
10.
Nat Biotechnol ; 31(4): 325-30, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23475072

RESUMEN

Genes underlying mutant phenotypes can be isolated by combining marker discovery, genetic mapping and resequencing, but a more straightforward strategy for mapping mutations would be the direct comparison of mutant and wild-type genomes. Applying such an approach, however, is hampered by the need for reference sequences and by mutational loads that confound the unambiguous identification of causal mutations. Here we introduce NIKS (needle in the k-stack), a reference-free algorithm based on comparing k-mers in whole-genome sequencing data for precise discovery of homozygous mutations. We applied NIKS to eight mutants induced in nonreference rice cultivars and to two mutants of the nonmodel species Arabis alpina. In both species, comparing pooled F2 individuals selected for mutant phenotypes revealed small sets of mutations including the causal changes. Moreover, comparing M3 seedlings of two allelic mutants unambiguously identified the causal gene. Thus, for any species amenable to mutagenesis, NIKS enables forward genetics without requiring segregating populations, genetic maps and reference sequences.


Asunto(s)
Algoritmos , Arabis/genética , Genoma de Planta/genética , Mutación/genética , Oryza/genética , Análisis de Secuencia de ADN/métodos , Alelos , Arabidopsis/metabolismo , Emparejamiento Base/genética , Secuencia de Bases , Mapeo Cromosómico , Cruzamientos Genéticos , Metanosulfonato de Etilo , Flores/genética , Genes de Plantas/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estándares de Referencia , Eliminación de Secuencia
11.
Genome Biol ; 14(6): R61, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23773572

RESUMEN

Mapping-by-sequencing combines genetic mapping with whole-genome sequencing in order to accelerate mutant identification. However, application of mapping-by-sequencing requires decisions on various practical settings on the experimental design that are not intuitively answered. Following an experimentally determined recombination landscape of Arabidopsis and next generation sequencing-specific biases, we simulated more than 400,000 mapping-by-sequencing experiments. This allowed us to evaluate a broad range of different types of experiments and to develop general rules for mapping-by-sequencing in Arabidopsis. Most importantly, this informs about the properties of different crossing scenarios, the number of recombinants and sequencing depth needed for successful mapping experiments.


Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Cruzamiento , Cruzamientos Genéticos , Mutación , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA