Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.672
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(6): 1402-1421.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38428422

RESUMEN

Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.


Asunto(s)
Inflamación , Interleucina-10 , Mielopoyesis , Animales , Ratones , Embarazo/inmunología , Feto , Hematopoyesis , Células Madre Hematopoyéticas/citología , Inflamación/inmunología , Interleucina-10/inmunología , Animales Recién Nacidos , Femenino
2.
Cell ; 186(25): 5606-5619.e24, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065081

RESUMEN

Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Humanos , Apoptosis , Organoides , Transducción de Señal , Análisis de la Célula Individual , Evaluación Preclínica de Medicamentos , Algoritmos , Células Madre
3.
Cell ; 185(3): 416-418, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35081334

RESUMEN

In this issue of Cell, Jin et al. describe several innovative tools for microbiome engineering to enable in situ editing of complex communities. However, challenges remain to overcome the widespread genetic intractability of microbiome constituents.


Asunto(s)
Microbiota
4.
Cell ; 184(22): 5635-5652.e29, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34653350

RESUMEN

While prime editing enables precise sequence changes in DNA, cellular determinants of prime editing remain poorly understood. Using pooled CRISPRi screens, we discovered that DNA mismatch repair (MMR) impedes prime editing and promotes undesired indel byproducts. We developed PE4 and PE5 prime editing systems in which transient expression of an engineered MMR-inhibiting protein enhances the efficiency of substitution, small insertion, and small deletion prime edits by an average 7.7-fold and 2.0-fold compared to PE2 and PE3 systems, respectively, while improving edit/indel ratios by 3.4-fold in MMR-proficient cell types. Strategic installation of silent mutations near the intended edit can enhance prime editing outcomes by evading MMR. Prime editor protein optimization resulted in a PEmax architecture that enhances editing efficacy by 2.8-fold on average in HeLa cells. These findings enrich our understanding of prime editing and establish prime editing systems that show substantial improvement across 191 edits in seven mammalian cell types.


Asunto(s)
Edición Génica , Sistemas CRISPR-Cas/genética , Línea Celular , ADN/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Femenino , Genes Dominantes , Genoma Humano , Humanos , Masculino , Modelos Biológicos , Homólogo 1 de la Proteína MutL/genética , Mutación/genética , ARN/metabolismo , Reproducibilidad de los Resultados
5.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32649862

RESUMEN

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Asunto(s)
Daño del ADN , Redes Reguladoras de Genes/fisiología , Aminoquinolinas/farmacología , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Ratones , Ácidos Picolínicos/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
6.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142680

RESUMEN

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Resistencia a Antineoplásicos/inmunología , Neoplasias/tratamiento farmacológico , Proclorperazina/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Presentación de Antígeno/efectos de los fármacos , Biopsia , Cetuximab/farmacología , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Antineoplásicos/genética , Endocitosis/efectos de los fármacos , Endocitosis/inmunología , Xenoinjertos , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Neoplasias/genética , Neoplasias/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Trastuzumab/farmacología
7.
Cell ; 171(7): 1611-1624.e24, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29198524

RESUMEN

The diverse malignant, stromal, and immune cells in tumors affect growth, metastasis, and response to therapy. We profiled transcriptomes of ∼6,000 single cells from 18 head and neck squamous cell carcinoma (HNSCC) patients, including five matched pairs of primary tumors and lymph node metastases. Stromal and immune cells had consistent expression programs across patients. Conversely, malignant cells varied within and between tumors in their expression of signatures related to cell cycle, stress, hypoxia, epithelial differentiation, and partial epithelial-to-mesenchymal transition (p-EMT). Cells expressing the p-EMT program spatially localized to the leading edge of primary tumors. By integrating single-cell transcriptomes with bulk expression profiles for hundreds of tumors, we refined HNSCC subtypes by their malignant and stromal composition and established p-EMT as an independent predictor of nodal metastasis, grade, and adverse pathologic features. Our results provide insight into the HNSCC ecosystem and define stromal interactions and a p-EMT program associated with metastasis.


Asunto(s)
Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/patología , Metástasis de la Neoplasia/patología , Carcinoma de Células Escamosas/genética , Células Cultivadas , Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Humanos , Masculino , Análisis de la Célula Individual , Microambiente Tumoral
8.
Cell ; 165(3): 679-89, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27040495

RESUMEN

Increasing antibiotic resistance among bacterial pathogens has rendered some infections untreatable with available antibiotics. Klebsiella pneumoniae, a bacterial pathogen that has acquired high-level antibiotic resistance, is a common cause of pulmonary infections. Optimal clearance of K. pneumoniae from the host lung requires TNF and IL-17A. Herein, we demonstrate that inflammatory monocytes are rapidly recruited to the lungs of K. pneumoniae-infected mice and produce TNF, which markedly increases the frequency of IL-17-producing innate lymphoid cells. While pulmonary clearance of K. pneumoniae is preserved in neutrophil-depleted mice, monocyte depletion or TNF deficiency impairs IL-17A-dependent resolution of pneumonia. Monocyte-mediated bacterial uptake and killing is enhanced by ILC production of IL-17A, indicating that innate lymphocytes engage in a positive-feedback loop with monocytes that promotes clearance of pneumonia. Innate immune defense against a highly antibiotic-resistant bacterial pathogen depends on crosstalk between inflammatory monocytes and innate lymphocytes that is mediated by TNF and IL-17A.


Asunto(s)
Infecciones por Klebsiella/inmunología , Klebsiella pneumoniae/fisiología , Animales , Inflamación/inmunología , Interleucina-17/inmunología , Infecciones por Klebsiella/microbiología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Linfocitos/inmunología , Ratones , Monocitos/inmunología , Factor de Necrosis Tumoral alfa/inmunología
9.
Nat Immunol ; 19(9): 1001-1012, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104633

RESUMEN

Immunoglobulin G3 (IgG3) has an uncertain role in the response to infection with and vaccination against human immunodeficiency virus (HIV). Here we describe a regulatory role for IgG3 in dampening the immune system-activating effects of chronic HIV viremia on B cells. Secreted IgG3 was bound to IgM-expressing B cells in vivo in HIV-infected chronically viremic individuals but not in early-viremic or aviremic individuals. Tissue-like memory (TLM) B cells, a population expanded by persistent HIV viremia, bound large amounts of IgG3. IgG3 induced clustering of B cell antigen receptors (BCRs) on the IgM+ B cells, which was mediated by direct interactions between soluble IgG3 and membrane IgM of the BCR (IgM-BCR). The inhibitory IgG receptor CD32b (FcγRIIb), complement component C1q and inflammatory biomarker CRP contributed to the binding of secreted IgG3 onto IgM-expressing B cells of HIV-infected individuals. Notably, IgG3-bound TLM B cells were refractory to IgM-BCR stimulation, thus demonstrating that IgG3 can regulate B cells during chronic activation of the immune system.


Asunto(s)
Linfocitos B/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Inmunoglobulina G/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Adulto , Proteína C-Reactiva/metabolismo , Células Cultivadas , Complemento C1q/metabolismo , Femenino , Humanos , Inmunoglobulina M/metabolismo , Memoria Inmunológica , Inmunomodulación , Masculino , Persona de Mediana Edad , Unión Proteica , Agregación de Receptores , Receptores de IgG/metabolismo , Adulto Joven
10.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046436

RESUMEN

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Asunto(s)
Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , National Institutes of Health (U.S.) , Estados Unidos
11.
Nature ; 625(7996): 715-721, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38267682

RESUMEN

Groundwater resources are vital to ecosystems and livelihoods. Excessive groundwater withdrawals can cause groundwater levels to decline1-10, resulting in seawater intrusion11, land subsidence12,13, streamflow depletion14-16 and wells running dry17. However, the global pace and prevalence of local groundwater declines are poorly constrained, because in situ groundwater levels have not been synthesized at the global scale. Here we analyse in situ groundwater-level trends for 170,000 monitoring wells and 1,693 aquifer systems in countries that encompass approximately 75% of global groundwater withdrawals18. We show that rapid groundwater-level declines (>0.5 m year-1) are widespread in the twenty-first century, especially in dry regions with extensive croplands. Critically, we also show that groundwater-level declines have accelerated over the past four decades in 30% of the world's regional aquifers. This widespread acceleration in groundwater-level deepening highlights an urgent need for more effective measures to address groundwater depletion. Our analysis also reveals specific cases in which depletion trends have reversed following policy changes, managed aquifer recharge and surface-water diversions, demonstrating the potential for depleted aquifer systems to recover.


Asunto(s)
Agua Subterránea , Aceleración , Ecosistema , Agua Subterránea/análisis , Abastecimiento de Agua/estadística & datos numéricos
12.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326622

RESUMEN

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Asunto(s)
Trastorno Depresivo Mayor , Metaloproteinasa 8 de la Matriz , Monocitos , Estrés Psicológico , Animales , Humanos , Ratones , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/enzimología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Espacio Extracelular/metabolismo , Metaloproteinasa 8 de la Matriz/sangre , Metaloproteinasa 8 de la Matriz/deficiencia , Metaloproteinasa 8 de la Matriz/genética , Metaloproteinasa 8 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Monocitos/química , Monocitos/inmunología , Monocitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Tejido Parenquimatoso/metabolismo , Análisis de Expresión Génica de una Sola Célula , Conducta Social , Aislamiento Social , Estrés Psicológico/sangre , Estrés Psicológico/genética , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo
13.
Nature ; 629(8013): 919-926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589574

RESUMEN

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).


Asunto(s)
Antineoplásicos , Mutación , Neoplasias , Proteína Oncogénica p21(ras) , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Guanosina Trifosfato/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteína Oncogénica p21(ras)/antagonistas & inhibidores , Proteína Oncogénica p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Mol Cell ; 82(20): 3769-3780.e5, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36182691

RESUMEN

Complex genomes show intricate organization in three-dimensional (3D) nuclear space. Current models posit that cohesin extrudes loops to form self-interacting domains delimited by the DNA binding protein CTCF. Here, we describe and quantitatively characterize cohesin-propelled, jet-like chromatin contacts as landmarks of loop extrusion in quiescent mammalian lymphocytes. Experimental observations and polymer simulations indicate that narrow origins of loop extrusion favor jet formation. Unless constrained by CTCF, jets propagate symmetrically for 1-2 Mb, providing an estimate for the range of in vivo loop extrusion. Asymmetric CTCF binding deflects the angle of jet propagation as experimental evidence that cohesin-mediated loop extrusion can switch from bi- to unidirectional and is controlled independently in both directions. These data offer new insights into the physiological behavior of in vivo cohesin-mediated loop extrusion and further our understanding of the principles that underlie genome organization.


Asunto(s)
Cromatina , Proteínas Cromosómicas no Histona , Animales , Cromatina/genética , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polímeros/metabolismo , Mamíferos/metabolismo , Cohesinas
15.
Nature ; 620(7972): 116-121, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37407821

RESUMEN

Granites are nearly absent in the Solar System outside of Earth. Achieving granitic compositions in magmatic systems requires multi-stage melting and fractionation, which also increases the concentration of radiogenic elements1. Abundant water and plate tectonics facilitate these processes on Earth, aiding in remelting. Although these drivers are absent on the Moon, small granite samples have been found, but details of their origin and the scale of systems they represent are unknown2. Here we report microwave-wavelength measurements of an anomalously hot geothermal source that is best explained by the presence of an approximately 50-kilometre-diameter granitic system below the thorium-rich farside feature known as Compton-Belkovich. Passive microwave radiometry is sensitive to the integrated thermal gradient to several wavelengths depth. The 3-37-gigahertz antenna temperatures of the Chang'e-1 and Chang'e-2 microwave instruments allow us to measure a peak heat flux of about 180 milliwatts per square metre, which is about 20 times higher than that of the average lunar highlands3,4. The surprising magnitude and geographic extent of this feature imply an Earth-like, evolved granitic system larger than believed possible on the Moon, especially outside of the Procellarum region5. Furthermore, these methods are generalizable: similar uses of passive radiometric data could vastly expand our knowledge of geothermal processes on the Moon and other planetary bodies.

16.
Nature ; 617(7960): 306-311, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37165236

RESUMEN

The Indian Ocean provides a source of salt for North Atlantic deep-water convection sites, via the Agulhas Leakage, and may thus drive changes in the ocean's overturning circulation1-3. However, little is known about the salt content variability of Indian Ocean and Agulhas Leakage waters during past glacial cycles and how this may influence circulation. Here we show that the glacial Indian Ocean surface salt budget was notably different from the modern, responding dynamically to changes in sea level. Indian Ocean surface salinity increased during glacial intensification, peaking in glacial maxima. We find that this is due to rapid land exposure in the Indonesian archipelago induced by glacial sea-level lowering, and we suggest a mechanistic link via reduced input of relatively fresh Indonesian Throughflow waters into the Indian Ocean. Using climate model results, we show that the release of this glacial Indian Ocean salinity via the Agulhas Leakage during deglaciation can directly impact the Atlantic Meridional Overturning Circulation and global climate.

17.
Nature ; 620(7973): 303-309, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37407822

RESUMEN

Orbital observations suggest that Mars underwent a recent 'ice age' (roughly 0.4-2.1 million years ago), during which a latitude-dependent ice-dust mantle (LDM)1,2 was emplaced. A subsequent decrease in obliquity amplitude resulted in the emergence of an 'interglacial period'1,3 during which the lowermost latitude LDM ice4-6 was etched and removed, returning it to the polar cap. These observations are consistent with polar cap stratigraphy1,7, but lower- to mid-latitude in situ surface observations in support of a glacial-interglacial transition that can be reconciled with mesoscale and global atmospheric circulation models8 is lacking. Here we present a suite of measurements obtained by the Zhurong rover during its traverse across the southern LDM region in Utopia Planitia, Mars. We find evidence for a stratigraphic sequence involving initial barchan dune formation, indicative of north-easterly winds, cementation of dune sediments, followed by their erosion by north-westerly winds, eroding the barchan dunes and producing distinctive longitudinal dunes, with the transition in wind regime consistent with the end of the ice age. The results are compatible with the Martian polar stratigraphic record and will help improve our understanding of the ancient climate history of Mars9.

18.
Nature ; 613(7943): 292-297, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631651

RESUMEN

The recovery of long-term climate proxy records with seasonal resolution is rare because of natural smoothing processes, discontinuities and limitations in measurement resolution. Yet insolation forcing, a primary driver of multimillennial-scale climate change, acts through seasonal variations with direct impacts on seasonal climate1. Whether the sensitivity of seasonal climate to insolation matches theoretical predictions has not been assessed over long timescales. Here, we analyse a continuous record of water-isotope ratios from the West Antarctic Ice Sheet Divide ice core to reveal summer and winter temperature changes through the last 11,000 years. Summer temperatures in West Antarctica increased through the early-to-mid-Holocene, reached a peak 4,100 years ago and then decreased to the present. Climate model simulations show that these variations primarily reflect changes in maximum summer insolation, confirming the general connection between seasonal insolation and warming and demonstrating the importance of insolation intensity rather than seasonally integrated insolation or season duration2,3. Winter temperatures varied less overall, consistent with predictions from insolation forcing, but also fluctuated in the early Holocene, probably owing to changes in meridional heat transport. The magnitudes of summer and winter temperature changes constrain the lowering of the West Antarctic Ice Sheet surface since the early Holocene to less than 162 m and probably less than 58 m, consistent with geological constraints elsewhere in West Antarctica4-7.

19.
Nature ; 619(7970): 632-639, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344599

RESUMEN

Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.


Asunto(s)
Neoplasias Colorrectales , Histona Demetilasas , Antígenos de Histocompatibilidad Menor , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Regulación hacia Arriba
20.
Annu Rev Microbiol ; 77: 427-449, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37339736

RESUMEN

Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA