Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Rheumatol Int ; 42(2): 215-239, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35013839

RESUMEN

The study proposes a novel machine learning (ML) paradigm for cardiovascular disease (CVD) detection in individuals at medium to high cardiovascular risk using data from a Greek cohort of 542 individuals with rheumatoid arthritis, or diabetes mellitus, and/or arterial hypertension, using conventional or office-based, laboratory-based blood biomarkers and carotid/femoral ultrasound image-based phenotypes. Two kinds of data (CVD risk factors and presence of CVD-defined as stroke, or myocardial infarction, or coronary artery syndrome, or peripheral artery disease, or coronary heart disease) as ground truth, were collected at two-time points: (i) at visit 1 and (ii) at visit 2 after 3 years. The CVD risk factors were divided into three clusters (conventional or office-based, laboratory-based blood biomarkers, carotid ultrasound image-based phenotypes) to study their effect on the ML classifiers. Three kinds of ML classifiers (Random Forest, Support Vector Machine, and Linear Discriminant Analysis) were applied in a two-fold cross-validation framework using the data augmented by synthetic minority over-sampling technique (SMOTE) strategy. The performance of the ML classifiers was recorded. In this cohort with overall 46 CVD risk factors (covariates) implemented in an online cardiovascular framework, that requires calculation time less than 1 s per patient, a mean accuracy and area-under-the-curve (AUC) of 98.40% and 0.98 (p < 0.0001) for CVD presence detection at visit 1, and 98.39% and 0.98 (p < 0.0001) at visit 2, respectively. The performance of the cardiovascular framework was significantly better than the classical CVD risk score. The ML paradigm proved to be powerful for CVD prediction in individuals at medium to high cardiovascular risk.


Asunto(s)
Artritis Reumatoide/complicaciones , Enfermedades Cardiovasculares/diagnóstico , Aprendizaje Automático , Placa Aterosclerótica/diagnóstico por imagen , Arterias Carótidas/diagnóstico por imagen , Estudios Transversales , Femenino , Arteria Femoral/diagnóstico por imagen , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Proyectos Piloto , Reproducibilidad de los Resultados
2.
Rev Cardiovasc Med ; 21(4): 541-560, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33387999

RESUMEN

Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors.


Asunto(s)
Inteligencia Artificial , COVID-19/epidemiología , Enfermedades Cardiovasculares/epidemiología , Atención a la Salud/métodos , Pandemias , Medición de Riesgo , SARS-CoV-2 , Enfermedades Cardiovasculares/terapia , Comorbilidad , Humanos , Factores de Riesgo
3.
Rheumatol Int ; 40(12): 1921-1939, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32857281

RESUMEN

Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that affects synovial joints and has various extra-articular manifestations, including atherosclerotic cardiovascular disease (CVD). Patients with RA experience a higher risk of CVD, leading to increased morbidity and mortality. Inflammation is a common phenomenon in RA and CVD. The pathophysiological association between these diseases is still not clear, and, thus, the risk assessment and detection of CVD in such patients is of clinical importance. Recently, artificial intelligence (AI) has gained prominence in advancing healthcare and, therefore, may further help to investigate the RA-CVD association. There are three aims of this review: (1) to summarize the three pathophysiological pathways that link RA to CVD; (2) to identify several traditional and carotid ultrasound image-based CVD risk calculators useful for RA patients, and (3) to understand the role of artificial intelligence in CVD risk assessment in RA patients. Our search strategy involves extensively searches in PubMed and Web of Science databases using search terms associated with CVD risk assessment in RA patients. A total of 120 peer-reviewed articles were screened for this review. We conclude that (a) two of the three pathways directly affect the atherosclerotic process, leading to heart injury, (b) carotid ultrasound image-based calculators have shown superior performance compared with conventional calculators, and (c) AI-based technologies in CVD risk assessment in RA patients are aggressively being adapted for routine practice of RA patients.


Asunto(s)
Artritis Reumatoide/fisiopatología , Aterosclerosis/diagnóstico , Arterias Carótidas/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Artritis Reumatoide/complicaciones , Aterosclerosis/complicaciones , Aterosclerosis/fisiopatología , Arterias Carótidas/patología , Aprendizaje Profundo , Progresión de la Enfermedad , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Medición de Riesgo
4.
J Med Syst ; 44(12): 208, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175247

RESUMEN

This study developed an office-based cardiovascular risk calculator using a machine learning (ML) algorithm that utilized a focused carotid ultrasound. The design of this study was divided into three steps. The first step involved collecting 18 office-based biomarkers consisting of six clinical risk factors (age, sex, body mass index, systolic blood pressure, diastolic blood pressure, and smoking) and 12 carotid ultrasound image-based phenotypes. The second step consisted of the design of an ML-based cardiovascular risk calculator-called "AtheroEdge Composite Risk Score 2.0" (AECRS2.0ML) for risk stratification, considering chronic kidney disease (CKD) as the surrogate endpoint of cardiovascular disease. The last step consisted of comparing AECRS2.0ML against the currently utilized office-based CVD calculators, namely the Framingham risk score (FRS) and the World Health Organization (WHO) risk scores. A cohort of 379 Asian-Indian patients with type-2 diabetes mellitus, hypertension, and chronic kidney disease (stage 1 to 5) were recruited for this cross-sectional study. From this retrospective cohort, 758 ultrasound scan images were acquired from the far walls of the left and right common carotid arteries [mean age = 55 ± 10.8 years, 67.28% males, 91.82% diabetic, 86.54% hypertensive, and 83.11% with CKD]. The mean office-based cardiovascular risk estimates using FRS and WHO calculators were 26% and 19%, respectively. AECRS2.0ML demonstrated a better risk stratification ability having a higher area-under-the-curve against FRS and WHO by ~30% (0.871 vs. 0.669) and ~ 20% (0.871 vs. 0.727), respectively. The office-based machine-learning cardiovascular risk-stratification tool (AECRS2.0ML) shows superior performance compared to currently available conventional cardiovascular risk calculators.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Cardiovasculares/diagnóstico por imagen , Estudios Transversales , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Recién Nacido , Aprendizaje Automático , Masculino , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo
5.
Curr Atheroscler Rep ; 21(2): 7, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30684090

RESUMEN

PURPOSE OF THE REVIEW: Rheumatoid arthritis (RA) is a chronic, autoimmune disease which may result in a higher risk of cardiovascular (CV) events and stroke. Tissue characterization and risk stratification of patients with rheumatoid arthritis are a challenging problem. Risk stratification of RA patients using traditional risk factor-based calculators either underestimates or overestimates the CV risk. Advancements in medical imaging have facilitated early and accurate CV risk stratification compared to conventional cardiovascular risk calculators. RECENT FINDING: In recent years, a link between carotid atherosclerosis and rheumatoid arthritis has been widely discussed by multiple studies. Imaging the carotid artery using 2-D ultrasound is a noninvasive, economic, and efficient imaging approach that provides an atherosclerotic plaque tissue-specific image. Such images can help to morphologically characterize the plaque type and accurately measure vital phenotypes such as media wall thickness and wall variability. Intelligence-based paradigms such as machine learning- and deep learning-based techniques not only automate the risk characterization process but also provide an accurate CV risk stratification for better management of RA patients. This review provides a brief understanding of the pathogenesis of RA and its association with carotid atherosclerosis imaged using the B-mode ultrasound technique. Lacunas in traditional risk scores and the role of machine learning-based tissue characterization algorithms are discussed and could facilitate cardiovascular risk assessment in RA patients. The key takeaway points from this review are the following: (i) inflammation is a common link between RA and atherosclerotic plaque buildup, (ii) carotid ultrasound is a better choice to characterize the atherosclerotic plaque tissues in RA patients, and (iii) intelligence-based paradigms are useful for accurate tissue characterization and risk stratification of RA patients.


Asunto(s)
Artritis Reumatoide/complicaciones , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/etiología , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/etiología , Aprendizaje Profundo , Artritis Reumatoide/patología , Arterias Carótidas/patología , Humanos , Inflamación/complicaciones , Inflamación/metabolismo , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/etiología , Placa Aterosclerótica/metabolismo , Medición de Riesgo , Factores de Riesgo , Tomografía de Coherencia Óptica , Ultrasonografía
6.
Echocardiography ; 36(2): 345-361, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30623485

RESUMEN

MOTIVATION: This study presents a novel nonlinear model which can predict 10-year carotid ultrasound image-based phenotypes by fusing nine traditional cardiovascular risk factors (ethnicity, gender, age, artery type, body mass index, hemoglobin A1c, hypertension, low-density lipoprotein, and smoking) with five types of carotid automated image phenotypes (three types of carotid intima-media thickness (IMT), wall variability, and total plaque area). METHODOLOGY: Two-step process was adapted: First, five baseline carotid image-based phenotypes were automatically measured using AtheroEdge™ (AtheroPoint™ , CA, USA) system by two operators (novice and experienced) and an expert. Second, based on the annual progression rates of cIMT due to nine traditional cardiovascular risk factors, a novel nonlinear model was adapted for 10-year predictions of carotid phenotypes. RESULTS: Institute review board (IRB) approved 204 Japanese patients' left/right common carotid artery (407 ultrasound scans) was collected with a mean age of 69 ± 11 years. Age and hemoglobin were reported to have a high influence on the 10-year carotid phenotypes. Mean correlation coefficient (CC) between 10-year carotid image-based phenotype and age was improved by 39.35% in males and 25.38% in females. The area under the curves for the 10-year measurements of five phenotypes IMTave10yr , IMTmax10yr , IMTmin10yr , IMTV10yr , and TPA10yr were 0.96, 0.94, 0.90, 1.0, and 1.0. Inter-operator variability between two operators showed significant CC (P < 0.0001). CONCLUSIONS: A nonlinear model was developed and validated by fusing nine conventional CV risk factors with current carotid image-based phenotypes for predicting the 10-year carotid ultrasound image-based phenotypes which may be used risk assessment.


Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/epidemiología , Diabetes Mellitus , Anciano , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/patología , Estudios de Cohortes , Femenino , Humanos , Japón/epidemiología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Medición de Riesgo , Ultrasonografía/métodos
7.
Curr Atheroscler Rep ; 20(7): 33, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29781047

RESUMEN

PURPOSE OF REVIEW: Atherosclerotic plaque deposition within the coronary vessel wall leads to arterial stenosis and severe catastrophic events over time. Identification of these atherosclerotic plaque components is essential to pre-estimate the risk of cardiovascular disease (CVD) and stratify them as a high or low risk. The characterization and quantification of coronary plaque components are not only vital but also a challenging task which can be possible using high-resolution imaging techniques. RECENT FINDING: Atherosclerotic plaque components such as thin cap fibroatheroma (TCFA), fibrous cap, macrophage infiltration, large necrotic core, and thrombus are the microstructural plaque components that can be detected with only high-resolution imaging modalities such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Light-based OCT provides better visualization of plaque tissue layers of coronary vessel walls as compared to IVUS. Three dominant paradigms have been identified to characterize atherosclerotic plaque components based on optical attenuation coefficients, machine learning algorithms, and deep learning techniques. This review (condensation of 126 papers after downloading 150 articles) presents a detailed comparison among various methodologies utilized for plaque tissue characterization, classification, and arterial measurements in OCT. Furthermore, this review presents the different ways to predict and stratify the risk associated with the CVD based on plaque characterization and measurements in OCT. Moreover, this review discovers three different paradigms for plaque characterization and their pros and cons. Among all of the techniques, a combination of machine learning and deep learning techniques is a best possible solution that provides improved OCT-based risk stratification.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Procedimientos Endovasculares , Encuestas Epidemiológicas , Humanos , Tomografía de Coherencia Óptica/normas
8.
Int J Cardiovasc Imaging ; 37(11): 3145-3156, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34050838

RESUMEN

The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms-random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN (OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades de las Arterias Carótidas , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Inteligencia Artificial , Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Aprendizaje Automático , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo
9.
Int J Cardiovasc Imaging ; 37(4): 1171-1187, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33184741

RESUMEN

Machine learning (ML)-based algorithms for cardiovascular disease (CVD) risk assessment have shown promise in clinical decisions. However, they usually predict binary events using only conventional risk factors. Our overall goal was to develop the "multiclass machine learning (MCML)-based algorithms" (labelled as AtheroEdge 3.0ML) and assess whether considering carotid ultrasound imaging fused with conventional risk factors can provide better CVD/stroke risk prediction than conventional CVD risk calculators (CCVRC). Carotid ultrasound and coronary angiography were performed on 500 participants. Stenosis in the coronary arteries was used to assign participants a coronary angiographic score (CAS). CVD/stroke risk was determined using three types of MCML algorithms: (i) support vector machine (SVM), (ii) random forest (RF), and (iii) extreme gradient boost (XGBoost). The performance of CVD risk assessment using MCML and CCVRC (such as Framingham Risk Score, the Systematic Coronary Risk Evaluation score, and the Atherosclerotic CVD) was evaluated on test patients against the CAS as the gold standard for each class using the area-under-the-curve (AUC) and classification accuracy. The mean percentage improvement in AUC and the mean absolute improvement in accuracy over CCVRC using 90% training and 10% testing protocol (labelled as K10) were ~ 105% and ~ 28%, respectively. Of all the three MCML systems, RF showed the best performance. Further, carotid image phenotypes showed the most effective clinical feature in AtheroEdge 3.0ML performance. The AtheroEdge 3.0ML using carotid imaging are reliable, accurate, and superior to traditional CVD risk scoring methods for predicting the CVD/stroke risk due to coronary artery disease.


Asunto(s)
Estenosis Carotídea/diagnóstico por imagen , Angiografía Coronaria , Estenosis Coronaria/diagnóstico por imagen , Técnicas de Apoyo para la Decisión , Diagnóstico por Computador , Aprendizaje Automático , Placa Aterosclerótica , Accidente Cerebrovascular/etiología , Ultrasonografía , Anciano , Estenosis Carotídea/complicaciones , Estenosis Coronaria/complicaciones , Estudios Transversales , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Valor Predictivo de las Pruebas , Pronóstico , Interpretación de Imagen Radiográfica Asistida por Computador , Reproducibilidad de los Resultados , Medición de Riesgo , Máquina de Vectores de Soporte
10.
World J Diabetes ; 12(3): 215-237, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33758644

RESUMEN

Coronavirus disease 2019 (COVID-19) is a global pandemic where several comorbidities have been shown to have a significant effect on mortality. Patients with diabetes mellitus (DM) have a higher mortality rate than non-DM patients if they get COVID-19. Recent studies have indicated that patients with a history of diabetes can increase the risk of severe acute respiratory syndrome coronavirus 2 infection. Additionally, patients without any history of diabetes can acquire new-onset DM when infected with COVID-19. Thus, there is a need to explore the bidirectional link between these two conditions, confirming the vicious loop between "DM/COVID-19". This narrative review presents (1) the bidirectional association between the DM and COVID-19, (2) the manifestations of the DM/COVID-19 loop leading to cardiovascular disease, (3) an understanding of primary and secondary factors that influence mortality due to the DM/COVID-19 loop, (4) the role of vitamin-D in DM patients during COVID-19, and finally, (5) the monitoring tools for tracking atherosclerosis burden in DM patients during COVID-19 and "COVID-triggered DM" patients. We conclude that the bidirectional nature of DM/COVID-19 causes acceleration towards cardiovascular events. Due to this alarming condition, early monitoring of atherosclerotic burden is required in "Diabetes patients during COVID-19" or "new-onset Diabetes triggered by COVID-19 in Non-Diabetes patients".

11.
Int Angiol ; 40(2): 150-164, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33236868

RESUMEN

Chronic kidney disease (CKD) and cardiovascular disease (CVD) together result in an enormous burden on global healthcare. The estimated glomerular filtration rate (eGFR) is a well-established biomarker of CKD and is associated with adverse cardiac events. This review highlights the link between eGFR reduction and that of atherosclerosis progression, which increases the risk of adverse cardiovascular events. In general, CVD risk assessments are performed using conventional risk prediction models. However, since these conventional models were developed for a specific cohort with a unique risk profile and further these models do not consider atherosclerotic plaque-based phenotypes, therefore, such models can either underestimate or overestimate the risk of CVD events. This review examined the approaches used for CVD risk assessments in CKD patients using the concept of integrated risk factors. An integrated risk factor approach is one that combines the effect of conventional risk predictors and non-invasive carotid ultrasound image-based phenotypes. Furthermore, this review provided insights into novel artificial intelligence methods, such as machine learning and deep learning algorithms, to carry out accurate and automated CVD risk assessments and survival analyses in patients with CKD.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Accidente Cerebrovascular , Inteligencia Artificial , Enfermedades Cardiovasculares/diagnóstico por imagen , Tasa de Filtración Glomerular , Humanos , Fenotipo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/diagnóstico , Medición de Riesgo , Factores de Riesgo , Ultrasonido
12.
Front Biosci (Landmark Ed) ; 26(11): 1312-1339, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34856770

RESUMEN

Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.


Asunto(s)
Arterias/diagnóstico por imagen , Aterosclerosis/diagnóstico por imagen , COVID-19/fisiopatología , Enfermedades Cardiovasculares/diagnóstico por imagen , Estado Nutricional , Algoritmos , COVID-19/diagnóstico por imagen , COVID-19/virología , Humanos , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación
13.
Comput Biol Med ; 126: 104043, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33065389

RESUMEN

RECENT FINDINGS: Cardiovascular disease (CVD) is the leading cause of mortality and poses challenges for healthcare providers globally. Risk-based approaches for the management of CVD are becoming popular for recommending treatment plans for asymptomatic individuals. Several conventional predictive CVD risk models based do not provide an accurate CVD risk assessment for patients with different baseline risk profiles. Artificial intelligence (AI) algorithms have changed the landscape of CVD risk assessment and demonstrated a better performance when compared against conventional models, mainly due to its ability to handle the input nonlinear variations. Further, it has the flexibility to add risk factors derived from medical imaging modalities that image the morphology of the plaque. The integration of noninvasive carotid ultrasound image-based phenotypes with conventional risk factors in the AI framework has further provided stronger power for CVD risk prediction, so-called "integrated predictive CVD risk models." PURPOSE: of the review: The objective of this review is (i) to understand several aspects in the development of predictive CVD risk models, (ii) to explore current conventional predictive risk models and their successes and challenges, and (iii) to refine the search for predictive CVD risk models using noninvasive carotid ultrasound as an exemplar in the artificial intelligence-based framework. CONCLUSION: Conventional predictive CVD risk models are suboptimal and could be improved. This review examines the potential to include more noninvasive image-based phenotypes in the CVD risk assessment using powerful AI-based strategies.


Asunto(s)
Enfermedades Cardiovasculares , Placa Aterosclerótica , Accidente Cerebrovascular , Inteligencia Artificial , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/epidemiología , Arterias Carótidas/diagnóstico por imagen , Humanos , Medición de Riesgo , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología
14.
Angiology ; 71(10): 920-933, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32696658

RESUMEN

The objectives of this study are to (1) examine the "10-year cardiovascular risk" in the common carotid artery (CCA) versus carotid bulb using an integrated calculator called "AtheroEdge Composite Risk Score 2.0" (AECRS2.0) and (2) evaluate the performance of AECRS2.0 against "conventional cardiovascular risk calculators." These objectives are met by measuring (1) image-based phenotypes and AECRS2.0 score computation and (2) performance evaluation of AECRS2.0 against 12 conventional cardiovascular risk calculators. The Asian-Indian cohort (n = 379) with type 2 diabetes mellitus (T2DM), chronic kidney disease (CKD), or hypertension were retrospectively analyzed by acquiring the 1516 carotid ultrasound scans (mean age: 55 ± 10.1 years, 67% males, ∼92% with T2DM, ∼83% with CKD [stage 1-5], and 87.5% with hypertension [stage 1-2]). The carotid bulb showed a higher 10-year cardiovascular risk compared to the CCA by 18% (P < .0001). Patients with T2DM and/or CKD also followed a similar trend. The carotid bulb demonstrated a superior risk assessment compared to CCA in patients with T2DM and/or CKD by showing: (1) ∼13% better than CCA (0.93 vs 0.82, P = .0001) and (2) ∼29% better compared with 12 types of risk conventional calculators (0.93 vs 0.72, P = .06).


Asunto(s)
Arteria Carótida Común/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Hipertensión/diagnóstico por imagen , Insuficiencia Renal Crónica/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología , Adulto , Anciano , Pueblo Asiatico , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Humanos , Hipertensión/complicaciones , India , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/complicaciones , Estudios Retrospectivos , Medición de Riesgo
15.
Int Angiol ; 39(4): 290-306, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32214072

RESUMEN

BACKGROUND: Recently, a 10-year image-based integrated calculator (called AtheroEdge Composite Risk Score-AECRS1.0) was developed which combines conventional cardiovascular risk factors (CCVRF) with image phenotypes derived from carotid ultrasound (CUS). Such calculators did not include chronic kidney disease (CKD)-based biomarker called estimated glomerular filtration rate (eGFR). The novelty of this study is to design and develop an advanced integrated version called-AECRS2.0 that combines eGFR with image phenotypes to compute the composite risk score. Furthermore, AECRS2.0 was benchmarked against QRISK3 which considers eGFR for risk assessment. METHODS: The method consists of three major steps: 1) five, current CUS image phenotypes (CUSIP) measurements using AtheroEdge system (AtheroPoint, CA, USA) consisting of: average carotid intima-media thickness (cIMTave), maximum cIMT (cIMTmax), minimum cIMT (cIMTmin), variability in cIMT (cIMTV), and total plaque area (TPA); 2) five, 10-year CUSIP measurements by combining these current five CUSIP with 11 CCVRF (age, ethnicity, gender, body mass index, systolic blood pressure, smoking, carotid artery type, hemoglobin, low-density lipoprotein cholesterol, total cholesterol, and eGFR); 3) AECRS2.0 risk score computation and its comparison to QRISK3 using area-under-the-curve (AUC). RESULTS: South Asian-Indian 339 patients were retrospectively analyzed by acquiring their left/right common carotid arteries (678 CUS, mean age: 54.25±9.84 years; 75.22% males; 93.51% diabetic with HbA1c ≥6.5%; and mean eGFR 73.84±20.91 mL/min/1.73m2). The proposed AECRS2.0 reported higher AUC (AUC=0.89, P<0.001) compared to QRISK3 (AUC=0.51, P<0.001) by ~74% in CKD patients. CONCLUSIONS: An integrated calculator AECRS2.0 can be used to assess the 10-year CVD/stroke risk in patients suffering from CKD. AECRS2.0 was much superior to QRISK3.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Insuficiencia Renal Crónica , Accidente Cerebrovascular , Biomarcadores , Enfermedades Cardiovasculares/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/diagnóstico , Estudios Retrospectivos
16.
Angiology ; 71(6): 520-535, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32180436

RESUMEN

We evaluated the association between automatically measured carotid total plaque area (TPA) and the estimated glomerular filtration rate (eGFR), a biomarker of chronic kidney disease (CKD). Automated average carotid intima-media thickness (cIMTave) and TPA measurements in carotid ultrasound (CUS) were performed using AtheroEdge (AtheroPoint). Pearson correlation coefficient (CC) was then computed between the TPA and eGFR for (1) males versus females, (2) diabetic versus nondiabetic patients, and (3) between the left and right carotid artery. Overall, 339 South Asian Indian patients with either type 2 diabetes mellitus (T2DM) or CKD, or hypertension (stage 1 or stage 2) were retrospectively analyzed by acquiring cIMTave and TPA measurements of their left and right common carotid arteries (CCA; total CUS: 678, mean age: 54.2 ± 9.8 years; 75.2% males; 93.5% with T2DM). The CC between TPA and eGFR for different scenarios were (1) for males and females -0.25 (P < .001) and -0.35 (P < .001), respectively; (2) for T2DM and non-T2DM -0.26 (P < .001) and -0.49 (P = .02), respectively, and (3) for left and right CCA -0.25 (P < .001) and -0.23 (P < .001), respectively. Automated TPA is an equally reliable biomarker compared with cIMTave for patients with CKD (with or without T2DM) with subclinical atherosclerosis.


Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Arteria Carótida Común/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Diabetes Mellitus Tipo 2 , Tasa de Filtración Glomerular , Riñón/fisiopatología , Placa Aterosclerótica , Insuficiencia Renal Crónica/fisiopatología , Adulto , Anciano , Pueblo Asiatico , Presión Sanguínea , Enfermedades de las Arterias Carótidas/etnología , Estudios Transversales , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/etnología , Femenino , Humanos , Hipertensión/etnología , Hipertensión/fisiopatología , India/epidemiología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/etnología , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo
17.
Front Biosci (Landmark Ed) ; 25(6): 1132-1171, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32114427

RESUMEN

Diabetes and atherosclerosis are the predominant causes of stroke and cardiovascular disease (CVD) both in low- and high-income countries. This is due to the lack of appropriate medical care or high medical costs. Low-cost 10-year preventive screening can be used for deciding an effective therapy to reduce the effects of atherosclerosis in diabetes patients. American College of Cardiology (ACC)/American Heart Association (AHA) recommended the use of 10-year risk calculators, before advising therapy. Conventional risk calculators are suboptimal in certain groups of patients because their stratification depends on (a) current blood biomarkers and (b) clinical phenotypes, such as age, hypertension, ethnicity, and sex. The focus of this review is on risk assessment using innovative composite risk scores that use conventional blood biomarkers combined with vascular image-based phenotypes. AtheroEdge™ tool is beneficial for low-moderate to high-moderate and low-risk to high-risk patients for the current and 10-year risk assessment that outperforms conventional risk calculators. The preventive screening tool that combines the image-based phenotypes with conventional risk factors can improve the 10-year cardiovascular/stroke risk assessment.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Complicaciones de la Diabetes/diagnóstico por imagen , Complicaciones de la Diabetes/prevención & control , Medicina Preventiva/métodos , Ultrasonografía/métodos , Enfermedades Cardiovasculares/diagnóstico por imagen , Enfermedades Cardiovasculares/prevención & control , Análisis Costo-Beneficio , Humanos , Medicina Preventiva/economía , Medición de Riesgo/economía , Medición de Riesgo/métodos , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/prevención & control , Ultrasonografía/economía
18.
Med Biol Eng Comput ; 57(7): 1553-1566, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30989577

RESUMEN

Today, the 10-year cardiovascular risk largely relies on conventional cardiovascular risk factors (CCVRFs) and suffers from the effect of atherosclerotic wall changes. In this study, we present a novel risk calculator AtheroEdge Composite Risk Score (AECRS1.0), designed by fusing CCVRF with ultrasound image-based phenotypes. Ten-year risk was computed using the Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study 56 (UKPDS56), UKPDS60, Reynolds Risk Score (RRS), and pooled composite risk (PCR) score. AECRS1.0 was computed by measuring the 10-year five carotid phenotypes such as IMT (ave., max., min.), IMT variability, and total plaque area (TPA) by fusing eight CCVRFs and then compositing them. AECRS1.0 was then benchmarked against the five conventional cardiovascular risk calculators by computing the receiver operating characteristics (ROC) and area under curve (AUC) values with a 95% CI. Two hundred four IRB-approved Japanese patients' left/right common carotid arteries (407 ultrasound scans) were collected with a mean age of 69 ± 11 years. The calculators gave the following AUC: FRS, 0.615; UKPDS56, 0.576; UKPDS60, 0.580; RRS, 0.590; PCRS, 0.613; and AECRS1.0, 0.990. When fusing CCVRF, TPA reported the highest AUC of 0.81. The patients were risk-stratified into low, moderate, and high risk using the standardized thresholds. The AECRS1.0 demonstrated the best performance on a Japanese diabetes cohort when compared with five conventional calculators. Graphical abstract AECRS1.0: Carotid ultrasound image phenotype-based 10-year cardiovascular risk calculator. The figure provides brief overview of the proposed carotid image phenotype-based 10-year cardiovascular risk calculator called AECRS1.0. AECRS1.0 was also benchmarked against five conventional cardiovascular risk calculators (Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study 56 (UKPDS56), UKPDS60, Reynolds Risk Score (RRS), and pooled composite risk (PCR) score).


Asunto(s)
Enfermedades Cardiovasculares/etiología , Arterias Carótidas/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Ultrasonografía/métodos , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , Arterias Carótidas/patología , Grosor Intima-Media Carotídeo , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Factores de Riesgo
19.
Comput Biol Med ; 105: 125-143, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30641308

RESUMEN

MOTIVATION: AtheroEdge Composite Risk Score (AECRS1.010yr) is an integrated stroke/cardiovascular risk calculator that was recently developed and computes the 10-year risk of carotid image phenotypes by integrating conventional cardiovascular risk factors (CCVRFs). It is therefore important to understand how closely AECRS1.010yr is associated with the ten other currently available conventional cardiovascular risk calculators (CCVRCs). METHODS: The Institutional Review Board of Toho University approved the examination of the left/right common carotid arteries of 202 Japanese patients. Step 1 consists of measurement of AECRS1.010yr, given current image phenotypes and CCVRFs. Step 2 consists of computing the risk score using ten different CCVRCs given CCVR factors: QRISK3, Framingham Risk Score (FRS), United Kingdom Prospective Diabetes Study (UKPDS) 56, UKPDS60, Reynolds Risk Score (RRS), Pooled cohort Risk Score (PCRS or ASCVD), Systematic Coronary Risk Evaluation (SCORE), Prospective Cardiovascular Munster Study (PROCAM) calculator, NIPPON, and World Health Organization (WHO) risk. Step 3 consists of computing the closeness factor between AECRS1.010yr and ten CCVRCs using cumulative ranking index derived using eight different statistically derived metrics. RESULTS: AECRS1.010yr reported the highest area-under-the-curve (0.927;P < 0.001) among all the risk calculators. The top three CCVRCs closest to AECRS1.010yr were QRISK3, FRS, and UKPDS60 with cumulative ranking scores of 2.1, 3.0, and 3.8, respectively. CONCLUSION: AECRS1.010yr produced the largest AUC due to the integration of image-based phenotypes with CCVR factors, and ranked at first place with the highest AUC. Cumulative ranking of ten CCVRCs demonstrated that QRISK3 was the closest calculator to AECRS1.010yr, which is also consistent with the industry trend.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Complicaciones de la Diabetes/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Medición de Riesgo , Factores de Riesgo , Accidente Cerebrovascular , Ultrasonografía
20.
Comput Biol Med ; 108: 182-195, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31005010

RESUMEN

PURPOSE: Conventional cardiovascular risk factors (CCVRFs) and carotid ultrasound image-based phenotypes (CUSIP) are independently associated with long-term risk of cardiovascular (CV) disease. In this study, 26 cardiovascular risk (CVR) factors which consisted of a combination of CCVRFs and CUSIP together were ranked. Further, an optimal risk calculator using AtheroEdge composite risk score (AECRS1.0) was designed and benchmarked against seven conventional CV risk (CVR) calculators. METHODS: Two types of ranking were performed: (i) ranking of 26 CVR factors and (ii) ranking of eight types of 10-year risk calculators. In the first case, multivariate logistic regression was used to compute the odds ratio (OR) and in the second, receiver operating characteristic curves were used to evaluate the performance of eight types of CVR calculators using SPSS23.0 and MEDCALC12.0 with validation against STATA15.0. RESULTS: The left and right common carotid arteries (CCA) of 202 Japanese patients were examined to obtain 404 ultrasound scans. CUSIP ranked in the top 50% of the 26 covariates. Intima-media thickness variability (IMTV) and IMTV10yr were the most influential carotid phenotypes for left CCA (OR = 250, P < 0.0001 and OR = 207, P < 0.0001 respectively) and right CCA (OR = 1614, P < 0.0001 and OR = 626, P < 0.0001 respectively). However, for the mean CCA, AECRS1.0 and AECRS1.010yr reported the most highly significant OR among all the CVR factors (OR = 1.073, P < 0.0001 and OR = 1.104, P < 0.0001). AECRS1.010yr also reported highest area-under-the-curve (AUC = 0.904, P < 0.0001) compared to seven types of conventional calculators. Age and glycated haemoglobin reported highest OR (1.96, P < 0.0001 and 1.05, P = 0.012) among all other CCVRFs. CONCLUSION: AECRS1.010yr demonstrated the best performance due to presence of CUSIP and ranked at the first place with highest AUC.


Asunto(s)
Arteria Carótida Común , Modelos Cardiovasculares , Accidente Cerebrovascular , Factores de Edad , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , Arteria Carótida Común/diagnóstico por imagen , Arteria Carótida Común/metabolismo , Arteria Carótida Común/fisiopatología , Femenino , Humanos , Japón , Masculino , Persona de Mediana Edad , Medición de Riesgo , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA