Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 609(7927): 605-610, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35768502

RESUMEN

Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1-3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4-9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas de Transporte de Membrana , Antiportadores/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Bicarbonatos/metabolismo , Ácidos y Sales Biliares/metabolismo , Sitios de Unión , Transporte Biológico , Herbicidas/metabolismo , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Ftalimidas/metabolismo , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/metabolismo , Prolina/metabolismo , Dominios Proteicos , Multimerización de Proteína , Protones , Sodio/metabolismo , Simportadores/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443187

RESUMEN

N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.


Asunto(s)
Transporte Biológico Activo/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Ftalimidas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico Activo/genética , Dimerización , Espectrometría de Masas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Oocitos/efectos de los fármacos , Fosforilación , Ftalimidas/farmacología , Reguladores del Crecimiento de las Plantas/antagonistas & inhibidores , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Xenopus
3.
New Phytol ; 235(3): 1111-1128, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491431

RESUMEN

De novo shoot organogenesis is a prerequisite for numerous applications in plant research and breeding but is often a limiting factor, for example, in genome editing approaches. Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors have been characterized as crucial regulators of shoot specification, however up-stream components controlling their activity during shoot regeneration are only partially identified. In a chemical genetic screen, we isolated ZIC2, a novel activator of HD-ZIP III activity. Using molecular, physiological and hormone transport analyses in Arabidopsis and sunflower (Helianthus annuus), we examined the molecular mechanism by which the drug promotes HD-ZIP III expression. ZIC2-dependent upregulation of HD-ZIP III transcription promotes shoot regeneration in Arabidopsis and is accompanied by the induction of shoot specifying factors WUS and RAP2.6L and a subset of cytokinin biosynthesis enzymes. ZIC2's effect on HD-ZIP III expression and regeneration is based on its ability to limit polar auxin transport. We further provide evidence that chemical modulation of auxin efflux can enhance de novo shoot formation in the regeneration recalcitrant species sunflower. Activation of HD-ZIP III transcription during shoot regeneration depends on the local distribution of auxin and chemical modulation of auxin transport can be used to overcome poor shoot organogenesis in tissue culture.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Fitomejoramiento , Factores de Transcripción/metabolismo
4.
Nat Biotechnol ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267759

RESUMEN

Clonal propagation of plants by induction of adventitious roots (ARs) from stem cuttings is a requisite step in breeding programs. A major barrier exists for propagating valuable plants that naturally have low capacity to form ARs. Due to the central role of auxin in organogenesis, indole-3-butyric acid is often used as part of commercial rooting mixtures, yet many recalcitrant plants do not form ARs in response to this treatment. Here we describe the synthesis and screening of a focused library of synthetic auxin conjugates in Eucalyptus grandis cuttings and identify 4-chlorophenoxyacetic acid-L-tryptophan-OMe as a competent enhancer of adventitious rooting in a number of recalcitrant woody plants, including apple and argan. Comprehensive metabolic and functional analyses reveal that this activity is engendered by prolonged auxin signaling due to initial fast uptake and slow release and clearance of the free auxin 4-chlorophenoxyacetic acid. This work highlights the utility of a slow-release strategy for bioactive compounds for more effective plant growth regulation.

5.
Dev Cell ; 52(2): 223-235.e5, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31866202

RESUMEN

Cell polarity is a key feature in the development of multicellular organisms. For instance, asymmetrically localized plasma-membrane-integral PIN-FORMED (PIN) proteins direct transcellular fluxes of the phytohormone auxin that govern plant development. Fine-tuned auxin flux is important for root protophloem sieve element differentiation and requires the interacting plasma-membrane-associated BREVIS RADIX (BRX) and PROTEIN KINASE ASSOCIATED WITH BRX (PAX) proteins. We observed "donut-like" polar PIN localization in developing sieve elements that depends on complementary, "muffin-like" polar localization of BRX and PAX. Plasma membrane association and polarity of PAX, and indirectly BRX, largely depends on phosphatidylinositol-4,5-bisphosphate. Consistently, mutants in phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) display protophloem differentiation defects similar to brx mutants. The same PIP5Ks are in complex with BRX and display "muffin-like" polar localization. Our data suggest that the BRX-PAX module recruits PIP5Ks to reinforce PAX polarity and thereby the polarity of all three proteins, which is required to maintain a local PIN minimum.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Polaridad Celular , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Mutación , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo
6.
Nat Plants ; 5(11): 1114-1119, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712756

RESUMEN

PIN-FORMED (PIN) transporters mediate directional, intercellular movement of the phytohormone auxin in land plants. To elucidate the evolutionary origins of this developmentally crucial mechanism, we analysed the single PIN homologue of a simple green alga Klebsormidium flaccidum. KfPIN functions as a plasma membrane-localized auxin exporter in land plants and heterologous models. While its role in algae remains unclear, PIN-driven auxin export is probably an ancient and conserved trait within streptophytes.


Asunto(s)
Chlorophyta/metabolismo , Evolución Molecular , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Chlorophyta/genética , Proteínas de Transporte de Membrana/genética , Plantas/genética , Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA