Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Appl Microbiol ; 133(4): 2528-2546, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35858752

RESUMEN

AIMS: The aim was to characterize a collection of Cronobacter sakazakii isolates collected from various origins in Jordan. METHODS AND RESULTS: The isolates were characterized using 16S rRNA sequencing, DNA microarray, multi-locus sequence typing (MLST), O-serotyping, virulence gene identification and antibiotic susceptibility testing. The identities and phylogenetic relatedness revealed that C. sakazakii sequence type 4 (ST4) and Csak O:1 serotype were the most prevalent STs and serovars amongst these C. sakazakii strains. PCR screening of putative virulence genes showed that the siderophore-interacting protein gene (sip) and iron acquisition gene clusters (eitCBAD and iucABCD/iutA) were the most detected genes with noticeable variability in the type 6 secretion system (T6SS) and filamentous hemagglutinin/adhesion (FHA) gene loci. The antibiotic resistance profiles revealed that the majority of the isolates were susceptible to all antibiotics used despite harbouring a class C ß-lactamase resistance gene. CONCLUSIONS: The results described in this report provide additional insights about the considerable genotypic and phenotypic heterogeneity within C. sakazakii. SIGNIFICANCE AND IMPACT OF THE STUDY: The information reported in this study might be of great value in understanding the origins of C. sakazakii isolates, in addition to their diversity and variability, which might be helpful in preventing future outbreaks of this pathogen.


Asunto(s)
Cronobacter sakazakii , Sistemas de Secreción Tipo VI , Antibacterianos/farmacología , Cronobacter sakazakii/genética , Hemaglutininas , Hierro , Jordania , Tipificación de Secuencias Multilocus , Filogenia , ARN Ribosómico 16S , Sideróforos , Virulencia/genética
2.
Antonie Van Leeuwenhoek ; 115(5): 563-572, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35305190

RESUMEN

A white-colony-forming, facultative anaerobic, motile and Gram-stain-negative bacterium, designated G-1-2-2 T was isolated from soil of agriculture field near Kyonggi University, Republic of Korea. Strain G-1-2-2 T synthesized the polyhydroxybutyrate and could grow at 10-35 °C. The phylogenetic analysis based on 16S rRNA gene sequence showed that, strain G-1-2-2 T formed a lineage within the family Comamonadaceae and clustered as a member of the genus Ramlibacter. The 16S rRNA gene sequence of strain G-1-2-2 T showed high sequence similarities with Ramlibacter ginsenosidimutans BXN5-27 T (97.9%), Ramlibacter monticola G-3-2 T (97.9%) and Ramlibacter alkalitolerans CJ661T (97.5%). The sole respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and an unidentified phospholipid. The principal cellular fatty acids were C16:0, cyclo-C17:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The genome of strain G-1-2-2 T was 7,200,642 bp long with 13 contigs, 6,647 protein-coding genes, and DNA G + C content of 68.9%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain G-1-2-2 T and close members were ≤ 81.2 and 24.1%, respectively. The genome of strain G-1-2-2 T showed eight putative biosynthetic gene clusters responsible for various secondary metabolites. Genome mining revealed the presence of atoB, atoB2, phaS, phbB, phbC, and bhbD genes in the genome which are responsible for polyhydroxybutyrate biosynthesis. Based on these data, strain G-1-2-2 T represents a novel species in the genus Ramlibacter, for which the name Ramlibacter agri sp. nov. is proposed. The type strain is G-1-2-2 T (= KACC 21616 T = NBRC 114389 T).


Asunto(s)
Comamonadaceae , Suelo , Agricultura , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos , Humanos , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo
3.
Hum Mol Genet ; 28(3): 501-514, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30329053

RESUMEN

The extracellular signal-related kinase 1 and 2 (ERK1/2) pathway is a highly conserved signaling cascade with numerous essential functions in development. The scaffold protein Shoc2 amplifies the activity of the ERK1/2 pathway and is an essential modulator of a variety of signaling inputs. Germline mutations in Shoc2 are associated with the human developmental disease known as the Noonan-like syndrome with loose anagen hair. Clinical manifestations of this disease include congenital heart defects, developmental delays, distinctive facial abnormalities, reduced growth and cognitive deficits along with hair anomalies. The many molecular details of pathogenesis of the Noonan-like syndrome and related developmental disorders, cumulatively called RASopathies, remain poorly understood. Mouse knockouts for Shoc2 are embryonic lethal, emphasizing the need for additional animal models to study the role of Shoc2 in embryonic development. Here, we characterize a zebrafish shoc2 mutant, and show that Shoc2 is essential for development, and that its loss is detrimental for the development of the neural crest and for hematopoiesis. The zebrafish model of the Noonan-like syndrome described here provides a novel system for the study of structure-function analyses and for genetic screens in a tractable vertebrate system.


Asunto(s)
Hematopoyesis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Animales , Modelos Animales de Enfermedad , Mutación de Línea Germinal , Péptidos y Proteínas de Señalización Intracelular/fisiología , Síndrome del Cabello Anágeno Suelto/genética , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Mutación , Cresta Neural/metabolismo , Cresta Neural/fisiología , Síndrome de Noonan/genética , Fenotipo , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
4.
Microbiology (Reading) ; 166(8): 717-726, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32463353

RESUMEN

Acinetobacter baumannii is a multidrug-resistant opportunistic pathogen that affects patients with a compromised immune system and is becoming increasingly important as a hospital-derived infection. This pathogen is difficult to treat owing to its intrinsic multidrug resistance and ability to form antimicrobial-tolerant biofilms. In the present study, we aimed to assess the potential use of zerumbone as a novel anti-biofilm and/or anti-virulence agent against A. baumannii. The results showed that zerumbone at sub-inhibitory doses decreased biofilm formation and disrupted established A. baumannii biofilms. The zerumbone-induced decrease in biofilm formation was dose-dependent based on the results of microtitre plate biofilm assays and confocal laser scanning microscopy. In addition, our data validated the anti-virulence efficacy of zerumbone, wherein it significantly interfered with the motility of A. baumannii. To support these phenotypic results, transcriptional analysis revealed that zerumbone downregulated the expression of biofilm- and virulence-associated genes (adeA, adeB, adeC and bap) in A. baumannii. Overall, our findings suggested that zerumbone might be a promising bioactive agent for the treatment of biofilm- and virulence-related infections caused by multidrug-resistant A. baumannii.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Sesquiterpenos/farmacología , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/fisiología , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Expresión Génica/efectos de los fármacos , Locomoción/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Virulencia/efectos de los fármacos , Virulencia/genética
5.
Arch Microbiol ; 202(3): 473-482, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31705142

RESUMEN

The aim of this study is to evaluate the antibiofilm and antibacterial effects of auranofin against WT-ETBF, rETBF, WT-NTBF and clinically isolated Bacteroides fragilis strains. The minimum inhibitory concentration and biofilm inhibitory concentration of 0.25 µg/ml for auranofin against B. fragilis were determined, and the biofilm eradication concentration was 1 µg/ml. At an auranofin concentration of 0.5 µg/ml, little cellular metabolic activity was found. Confocal laser scanning microcopy results confirmed the inhibition of biofilm by auranofin. The effects of auranofin on the outer membrane protein (ompA) gene and the RND-type efflux pump (bmeB3) gene were investigated using quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR results showed that treatment with auranofin significantly reduced the gene expression compared to controls without auranofin. These data indicate the applicability of auranofin as a repurposed drug due to its inhibitory effect against biofilm formation of B. fragilis. Therefore, our study demonstrates that auranofin, already approved for human use, is a promising drug that has strong antibiofilm and antibacterial activity against B. fragilis.


Asunto(s)
Antibacterianos/farmacología , Auranofina/farmacología , Infecciones por Bacteroides/microbiología , Bacteroides fragilis/efectos de los fármacos , Biopelículas/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Bacteroides/tratamiento farmacológico , Bacteroides fragilis/genética , Bacteroides fragilis/fisiología , Reposicionamiento de Medicamentos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana
6.
Can J Microbiol ; 66(6): 389-399, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32073898

RESUMEN

The rapid increase in antibiotic resistance has prompted the discovery of drugs that reduce antibiotic resistance or new drugs that are an alternative to antibiotics. Plant extracts have health benefits and may also exhibit antibacterial and antibiofilm activities against pathogens. This study determined the antibacterial and antibiofilm effects of α-humulene extracted from plants against enterotoxigenic Bacteroides fragilis, which causes inflammatory bowel disease. The minimum inhibitory concentration and biofilm inhibitory concentration of α-humulene for B. fragilis were 2 µg/mL, and the biofilm eradication concentration was in the range of 8-32 µg/mL. The XTT reduction assay confirmed that the cellular metabolic activity in biofilm rarely occurred at the concentration of 8-16 µg/mL. In addition, biofilm inhibition by α-humulene was also detected via confocal laser scanning microcopy. Quantitative real-time polymerase chain reaction (qPCR) was also used to investigate the effect of α-humulene on the expression of resistance-nodulation-cell division type multidrug efflux pump genes (bmeB1 and bmeB3). According to the results of qPCR, α-humulene significantly reduced the expression of bmeB1 and bmeB3 genes. This study demonstrates the potential therapeutic application of α-humulene for inhibiting the growth of B. fragilis cells and biofilms, and it expands the knowledge about biofilm medicine.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Bacteroides/tratamiento farmacológico , Bacteroides fragilis/efectos de los fármacos , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Microbiana/efectos de los fármacos , Sesquiterpenos Monocíclicos/farmacología , Infecciones por Bacteroides/microbiología , Bacteroides fragilis/crecimiento & desarrollo , Bacteroides fragilis/fisiología , Biopelículas/crecimiento & desarrollo , Extractos Vegetales/farmacología
7.
Proc Natl Acad Sci U S A ; 114(14): E2826-E2835, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28325868

RESUMEN

Insulin-degrading enzyme (IDE) hydrolyzes bioactive peptides, including insulin, amylin, and the amyloid ß peptides. Polyanions activate IDE toward some substrates, yet an endogenous polyanion activator has not yet been identified. Here we report that inositol phosphates (InsPs) and phosphatdidylinositol phosphates (PtdInsPs) serve as activators of IDE. InsPs and PtdInsPs interact with the polyanion-binding site located on an inner chamber wall of the enzyme. InsPs activate IDE by up to ∼95-fold, affecting primarily Vmax The extent of activation and binding affinity correlate with the number of phosphate groups on the inositol ring, with phosphate positional effects observed. IDE binds PtdInsPs from solution, immobilized on membranes, or presented in liposomes. Interaction with PtdInsPs, likely PtdIns(3)P, plays a role in localizing IDE to endosomes, where the enzyme reportedly encounters physiological substrates. Thus, InsPs and PtdInsPs can serve as endogenous modulators of IDE activity, as well as regulators of its intracellular spatial distribution.


Asunto(s)
Endosomas/metabolismo , Fosfatos de Inositol/metabolismo , Insulisina/metabolismo , Fosfatidilinositoles/metabolismo , Androstadienos/farmacología , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Endosomas/efectos de los fármacos , Activación Enzimática , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Insulisina/química , Insulisina/genética , Liposomas/química , Liposomas/metabolismo , Mutación , Wortmanina
8.
Food Microbiol ; 70: 254-261, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29173634

RESUMEN

This study aimed to determine the influence of bacterial surface polysaccharides (cellulose, colanic acid, and lipopolysaccharide; LPS) on the colonization or survival of Escherichia coli O157:H7 on plants and the plant defense response. Survival of E. coli O157:H7 were evaluated on Arabidopsis thaliana and romaine lettuce as a model plant and an edible crop (leafy vegetable), respectively. The population of the wild-type strain of E. coli O157:H7 on Arabidopsis plants and lettuce was significantly (P < 0.05) greater compared with the colanic acid-deficient and LPS-truncated mutants on day 1 and day 5 post-inoculation. This result indicates that colanic acid and LPS structures may contribute to the ability of bacterial survival or persistence on plants. The wild-type strain of E. coli O157:H7 produced approximately twice the amount (P < 0.05) of capsular polysaccharide (CPS) than the colanic acid and LPS-truncated mutants. The significantly lower production of CPS was associated with significantly greater (2-fold) expression of pathogenesis-related gene (PR1) compared with the wild-type and cellulose-deficient mutant (P < 0.05). Collectively, the results of this study may suggest that specific surface polysaccharides of E. coli O157:H7 differentially induce the plant defense response, consequently affecting the survival of the human pathogen on plants. The survival and persistence of E. coli O157:H7 was similar on Arabidopsis and lettuce regardless of day post-inoculation.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/inmunología , Lactuca/inmunología , Lactuca/microbiología , Polisacáridos/inmunología , Escherichia coli O157/crecimiento & desarrollo , Humanos , Viabilidad Microbiana , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología
9.
J Cell Sci ; 128(23): 4428-41, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26519477

RESUMEN

The scaffold protein Shoc2 accelerates activity of the ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1) pathway. Mutations in Shoc2 result in Noonan-like RASopathy, a developmental disorder with a wide spectrum of symptoms. The amplitude of the ERK1/2 signals transduced through the complex is fine-tuned by the HUWE1-mediated ubiquitylation of Shoc2 and its signaling partner RAF-1. Here, we provide a mechanistic basis of how ubiquitylation of Shoc2 and RAF-1 is controlled. We demonstrate that the newly identified binding partner of Shoc2, the (AAA+) ATPase PSMC5, triggers translocation of Shoc2 to endosomes. At the endosomes, PSMC5 displaces the E3 ligase HUWE1 from the scaffolding complex to attenuate ubiquitylation of Shoc2 and RAF-1. We show that a RASopathy mutation that changes the subcellular distribution of Shoc2 leads to alterations in Shoc2 ubiquitylation due to the loss of accessibility to PSMC5. In summary, our results demonstrate that PSMC5 is a new and important player involved in regulating ERK1/2 signal transmission through the remodeling of Shoc2 scaffold complex in a spatially-defined manner.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Mutación , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Factores de Transcripción/genética
10.
Food Microbiol ; 64: 179-185, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28213024

RESUMEN

This study was conducted to provide information regarding mitigation of cross-contamination through the use of sanitizer during crisping at retail outlets. Seven non-inoculated heads and one inoculated head (≈5 log CFU/g) of lettuce were placed into commercial sink filled with 76 L of tap water (TW), electrolyzed water (EW, free chlorine: 43 ± 6 ppm), lactic acid and phosphoric acid-based sanitizer (LPA, pH 2.89), or citric acid-based sanitizer (CA, pH 2.78) and soaked for 5 min. Two subsequent batches (eight non-inoculated heads per batch) were soaked in the same solution. Soaking with EW significantly reduced the population of S. enterica (2.8 ± 1.5 log CFU/g), E. coli O157:H7 (3.4 ± 1.1 log CFU/g), and L. monocytogenes (2.6 ± 0.7 log CFU/g) inoculated on Romaine lettuce compared to TW, LPA, and CA (p < 0.05). On Red leaf lettuce, EW significantly reduced populations of S. enterica and E. coli O157:H7, but not L. monocytogenes compared to other treatments. No significant difference was noted between TW, LPA, and CA in reducing foodborne pathogens (p > 0.05) or preventing cross-contamination. Soaking with EW prevented cross-contamination among lettuce heads and controlled bacterial populations in crisping water for three consecutive batches. EW may be an effective option as a sanitizer to minimizing the cross-contamination of leafy greens during the retail crisping.


Asunto(s)
Desinfectantes/farmacología , Contaminación de Alimentos/prevención & control , Lactuca/microbiología , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Electrólisis , Escherichia coli O157/efectos de los fármacos , Manipulación de Alimentos , Microbiología de Alimentos , Inocuidad de los Alimentos , Concentración de Iones de Hidrógeno , Listeria monocytogenes/efectos de los fármacos , Salmonella/efectos de los fármacos , Agua
11.
Int J Syst Evol Microbiol ; 66(9): 3642-3650, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27306976

RESUMEN

A novel yellow bacterial strain, designated UCM-28T, was isolated from forest soil in Gyeonggi-Do, South Korea. The isolated strain was Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped, and grew at 10-37 °C, pH 5.5-9 and with 0-1 % NaCl. It could reduce nitrate to nitrite and hydrolyse aesculin. We determined the taxonomic position of strain UCM-28T; based on the 16S rRNA gene sequence, the strain belongs to the genus Novosphingobium. The bacterium showed the highest similarity to Novosphingobiumpiscinae SLH-16T (98.9 %), Novosphingobium rhizosphaerae JM-1T (97.7 %), Novosphingobium taihuense T3-B9T (97.2 %), Novosphingobium subterraneum DSM 12447T (97.1 %), Novosphingobium aromaticivorans DSM 12444T (97.1 %) and Novosphingobium capsulatum GIFU 11526T (96.7 %). Phylogenic trees also confirmed that strain UCM-28T is most closely related to Novosphingobiumpiscinae SLH-16T and others, and is positioned within the genus Novosphingobium. The DNA relatedness of strain UCM-28T with its references was in the range of 20.9-35.2 %. The polar lipid profile revealed diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, phosphatidylcholine, phosphatidylmonomethylethanolamine, six unidentified polar lipids and two unknown glycolipids. The major quinone was ubiquinone Q-10, and the major polyamine was spermidine. The DNA G+C content was 63.5 mol%. The major fatty acids included (>10 %) summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) (46.3 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (24.9 %) and C14 : 0 2-OH (11.8 %). Based on the phylogenetic and phenotypic data, strain UCM-28T should be classified within the genus Novosphingobium as a representative of a novel species, named Novosphingobium flavum sp. nov. The type strain is UCM-28T (=KACC 18571T=NBRC 111647T).


Asunto(s)
Filogenia , Microbiología del Suelo , Sphingomonadaceae/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Espermidina/química , Sphingomonadaceae/genética , Sphingomonadaceae/aislamiento & purificación , Ubiquinona/química
12.
ACS Omega ; 8(12): 10784-10788, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008086

RESUMEN

Most organisms have circadian clocks to ensure the metabolic cycle to resonate with the rhythmic environmental changes without "damping," or losing robustness. Cyanobacteria is the oldest and simplest form of life that is known to harbor this biological intricacy. Its KaiABC-based central oscillator proteins can be reconstituted inside a test tube, and the post-translational modification cycle occurs with 24 h periodicity. KaiC's two major phosphorylation sites, Ser-431 and Thr-432, become phosphorylated and dephosphorylated by interacting with KaiA and KaiB, respectively. Here, we mutate Thr-432 into Ser to find the oscillatory phosphoryl transfer reaction damps. Previously, this mutant KaiC was reported to be arrhythmic in vivo. However, we found that the mutant KaiC gradually loses the ability to run in an autonomous manner and stays constitutively phosphorylated after 3 cycles in vitro.

13.
J Food Prot ; 86(2): 100037, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36916572

RESUMEN

Regulatory methods for detection of the foodborne protozoan parasite Cyclospora cayetanensis must be specific and sensitive. To that end, we designed and evaluated (in a single laboratory validation) a novel and improved primer/probe combination (Mit1C) for real-time PCR detection of C. cayetanensis in produce. The newly developed primer/probe combination targets a conserved region of the mitochondrial genome of C. cayetanensis that varies in other closely related organisms. The primer/probe combination was evaluated both in silico and using several real-time PCR kits and polymerases against an inclusivity/exclusivity panel comprised of a variety of C. cayetanensis oocysts, as well as DNA from other related Cyclospora spp. and closely related parasites. The new primer/probe combination amplified only C. cayetanensis, thus demonstrating specificity. Sensitivity was evaluated by artificially contaminating cilantro, raspberries, and romaine lettuce with variable numbers (200 and 5) of C. cayetanensis oocysts. As few as 5 oocysts were detected in 75%, 67.7%, and 50% of the spiked produce samples (cilantro, raspberries, and romaine lettuce), respectively, all uninoculated samples and no-template real-time PCR controls were negative. The improved primer/probe combination should prove an effective analytical tool for the specific detection of C. cayetanensis in produce.


Asunto(s)
Coriandrum , Cyclospora , Ciclosporiasis , Rubus , Animales , Cyclospora/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Oocistos , Ciclosporiasis/diagnóstico , Ciclosporiasis/parasitología
14.
Front Microbiol ; 14: 1074548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025625

RESUMEN

Introduction: With more public interest in consuming locally grown produce, small specialty crop farms (SSCF) are a viable and growing segment of the food production chain in the United States. Methods: The goal of this study was to investigate the genomic diversity of Campylobacter isolated from dairy manure (n = 69) collected from 10 SSCF in Northeast Ohio between 2018 and 2020. Results: A total of 56 C. jejuni and 13 C. coli isolates were sequenced. Multi-locus sequence typing (MLST) identified 22 sequence types (STs), with ST-922 (18%) and ST-61 (13%) predominant in C. jejuni and ST-829 (62%) and ST-1068 (38%) predominant in C. coli. Interestingly, isolates with similar genomic and gene contents were detected within and between SSCF over time, suggesting that Campylobacter could be transmitted between farms and may persist in a given SSCF over time. Virulence-associated genes (n = 35) involved in the uptake and utilization of potassium and organic compounds (succinate, gluconate, oxoglutarate, and malate) were detected only in the C. jejuni isolates, while 45 genes associated with increased resistance to environmental stresses (capsule production, cell envelope integrity, and iron uptake) were detected only in the C. coli isolates. Campylobacter coli isolates were also sub-divided into two distinct clusters based on the presence of unique prophages (n = 21) or IncQ conjugative plasmid/type-IV secretion system genes (n = 15). Campylobacter coli isolates harbored genes associated with resistance to streptomycin (aadE-Cc; 54%) and quinolone (gyrA-T86I; 77%), while C. jejuni had resistance genes for kanamycin (aph3'-IIIa; 20%). Both species harbored resistance genes associated with ß-lactam (especially, blaOXA-193; up to 100%) and tetracycline (tetO; up to 59%). Discussion/Conclusion: Our study demonstrated that Campylobacter genome plasticity associated with conjugative transfer might provide resistance to certain antimicrobials and viral infections via the acquisition of protein-encoding genes involved in mechanisms such as ribosomal protection and capsule modification.

15.
Biol Reprod ; 86(6): 185, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22460667

RESUMEN

FAM110C belongs to a family of proteins that regulates cell proliferation. In the present study, the spatiotemporal expression pattern of FAM110C and its potential role were examined during the periovulatory period. Immature female rats were injected with equine chorionic gonadotropin (eCG) followed by human chorionic gonadotropin (hCG) and ovaries or granulosa cells were collected at various times after hCG administration (n = 3/time point). Expression levels of Fam110c mRNA and protein were highly induced both in intact ovaries and granulosa cells at 8 to 12 h after hCG treatment. In situ hybridization analysis demonstrated Fam110c mRNA expression was induced in theca and granulosa cells at 4 h after hCG, primarily localized to granulosa cells at 8 h and 12 h, and decreased at 24 h after hCG. There was negligible Fam110c mRNA detected in newly forming corpora lutea. In rat granulosa cell cultures, hCG induced expression of Fam110c mRNA was inhibited by RU486, whereas NS398 and AG1478 had no effect, suggesting that Fam110c expression is regulated in part by the progesterone receptor pathway. Promoter activity analysis revealed that an Sp1 site was important for the induction of Fam110c expression by hCG. Overexpression of FAM110C promoted granulosa cells to arrest at the G(1) phase of the cell cycle but did not change progesterone levels. In summary, hCG induces Fam110c mRNA expression in granulosa cells by activation of an Sp1-binding site and the actions of progesterone. Our findings suggest that FAM110C may control granulosa cell differentiation into luteal cells by arresting cell cycle progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Células de la Granulosa/metabolismo , Células Lúteas/citología , Hormona Luteinizante/fisiología , Animales , Ciclo Celular , Gonadotropina Coriónica , Femenino , Hormonas Esteroides Gonadales/biosíntesis , Células de la Granulosa/citología , Humanos , Mutación , Ovulación , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Gut Pathog ; 14(1): 23, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668537

RESUMEN

BACKGROUND: Cronobacter sakazakii is a foodborne pathogen that causes septicemia, meningitis, and necrotizing enterocolitis in neonates and infants. The current research details the full genome sequences of two extremely persistent C. sakazakii strains (H322 and GK1025B) isolated from powdered infant formula (PIF) manufacturing settings. In addition, the genetic attributes associated with five plasmids, pH322_1, pH322_2, pGK1025B_1, pGK1025B_2, and pGK1025B_3 are described. MATERIALS AND METHODS: Using PacBio single-molecule real-time (SMRT®) sequencing technology, whole genome sequence (WGS) assemblies of C. sakazakii H322 [Sequence type (ST)83, clonal complex [CC] 83) and GK1025B (ST64, CC64) were generated. Plasmids, also sequenced, were aligned with phylogenetically related episomes to determine, and identify conserved and missing genomic regions. RESULTS: A truncated ~ 13 Kbp type 6 secretion system (T6SS) gene cluster harbored on virulence plasmids pH322_2 and pGK1025B_2, and a second large deletion (~ 6 Kbp) on pH322_2, which included genes for a tyrosine-type recombinase/integrase, a hypothetical protein, and a phospholipase D was identified. Within the T6SS of pH322_2 and pGK1025B_2, an arsenic resistance operon was identified which is in common with that of plasmids pSP291_1 and pESA3. In addition, PHASTER analysis identified an intact 96.9 Kbp Salmonella SSU5 prophage gene cluster in pH322_1 and pGK1025B_1 and showed that these two plasmids were phylogenetically related to C. sakazakii plasmids: pCS1, pCsa767a, pCsaC757b, pCsaC105731a. Plasmid pGK1025B_3 was identified as a novel conjugative Cronobacter plasmid. Furthermore, WGS analysis identified a ~ 16.4 Kbp type 4 secretion system gene cluster harbored on pGK1025B_3, which contained a phospholipase D gene, a key virulence factor in several host-pathogen diseases. CONCLUSION: These data provide high resolution information on C. sakazakii genomes and emphasizes the need for furthering surveillance studies to link genotype to phenotype of strains from previous investigations. These results provide baseline data necessary for future in-depth investigations of C. sakazakii that colonize PIF manufacturing facility settings and genomic analyses of these two C. sakazakii strains and five associated plasmids will contribute to a better understanding of this pathogen's survival and persistence within various "built environments" like PIF manufacturing facilities.

17.
Microorganisms ; 10(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35744717

RESUMEN

Salmonella enterica subsp. enterica serovar Bovismorbificans has caused multiple outbreaks involving the consumption of produce, hummus, and processed meat products worldwide. To elucidate the intra-serovar genomic structure of S. Bovismorbificans, a core-genome analysis with 2690 loci (based on 150 complete genomes representing Salmonella enterica serovars developed as part of this study) and a k-mer-binning based strategy were carried out on 95 whole genome sequencing (WGS) assemblies from Swiss, Canadian, and USA collections of S. Bovismorbificans strains from foodborne infections. Data mining of a digital DNA tiling array of legacy SARA and SARB strains was conducted to identify near-neighbors of S. Bovismorbificans. The core genome analysis and the k-mer-binning methods identified two polyphyletic clusters, each with emerging evolutionary properties. Four STs (2640, 142, 1499, and 377), which constituted the majority of the publicly available WGS datasets from >260 strains analyzed by k-mer-binning based strategy, contained a conserved core genome backbone with a different evolutionary lineage as compared to strains comprising the other cluster (ST150). In addition, the assortment of genotypic features contributing to pathogenesis and persistence, such as antimicrobial resistance, prophage, plasmid, and virulence factor genes, were assessed to understand the emerging characteristics of this serovar that are relevant clinically and for food safety concerns. The phylogenomic profiling of polyphyletic S. Bovismorbificans in this study corresponds to intra-serovar variations observed in S. Napoli and S. Newport serovars using similar high-resolution genomic profiling approaches and contributes to the understanding of the evolution and sequence divergence of foodborne Salmonellae. These intra-serovar differences may have to be thoroughly understood for the accurate classification of foodborne Salmonella strains needed for the uniform development of future food safety mitigation strategies.

18.
Microorganisms ; 10(7)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889115

RESUMEN

Cronobacter sakazakii continues to be isolated from ready-to-eat fresh and frozen produce, flours, dairy powders, cereals, nuts, and spices, in addition to the conventional sources of powdered infant formulae (PIF) and PIF production environments. To understand the sequence diversity, phylogenetic relationship, and virulence of C. sakazakii originating from plant-origin foods, comparative molecular and genomic analyses, and zebrafish infection (ZI) studies were applied to 88 strains. Whole genome sequences of the strains were generated for detailed bioinformatic analysis. PCR analysis showed that all strains possessed a pESA3-like virulence plasmid similar to reference C. sakazakii clinical strain BAA-894. Core genome analysis confirmed a shared genomic backbone with other C. sakazakii strains from food, clinical and environmental strains. Emerging nucleotide diversity in these plant-origin strains was highlighted using single nucleotide polymorphic alleles in 2000 core genes. DNA hybridization analyses using a pan-genomic microarray showed that these strains clustered according to sequence types (STs) identified by multi-locus sequence typing (MLST). PHASTER analysis identified 185 intact prophage gene clusters encompassing 22 different prophages, including three intact Cronobacter prophages: ENT47670, ENT39118, and phiES15. AMRFinderPlus analysis identified the CSA family class C ß-lactamase gene in all strains and a plasmid-borne mcr-9.1 gene was identified in three strains. ZI studies showed that some plant-origin C. sakazakii display virulence comparable to clinical strains. Finding virulent plant-origin C. sakazakii possessing significant genomic features of clinically relevant STs suggests that these foods can serve as potential transmission vehicles and supports widening the scope of continued surveillance for this important foodborne pathogen.

19.
FEBS J ; 288(3): 721-739, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32558243

RESUMEN

Leucine-rich repeat-containing proteins (LRR proteins) are involved in supporting a large number of cellular functions. In this review, we summarize recent advancements in understanding functions of the LRR proteins as signaling scaffolds. In particular, we explore what we have learned about the mechanisms of action of the LRR scaffolds Shoc2 and Erbin and their roles in normal development and disease. We discuss Shoc2 and Erbin in the context of their multiple known interacting partners in various cellular processes and summarize often unexpected functions of these proteins through analysis of their roles in human pathologies. We also review these LRR scaffold proteins as promising therapeutic targets and biomarkers with potential application across various pathologies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo , Transducción de Señal , Animales , Sitios de Unión , Humanos , Proteínas Repetidas Ricas en Leucina , Modelos Biológicos , Neoplasias/patología , Unión Proteica
20.
Life (Basel) ; 11(10)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34685430

RESUMEN

Oscillatory phosphorylation/dephosphorylation can be commonly found in a biological system as a means of signal transduction though its pivotal presence in the workings of circadian clocks has drawn significant interest: for example in a significant portion of the physiology of Synechococcus elongatus PCC 7942. The biological oscillatory reaction in the cyanobacterial circadian clock can be visualized through its reconstitution in a test tube by mixing three proteins-KaiA, KaiB and KaiC-with adenosine triphosphate and magnesium ions. Surprisingly, the oscillatory phosphorylation/dephosphorylation of the hexameric KaiC takes place spontaneously and almost indefinitely in a test tube as long as ATP is present. This autonomous post-translational modification is tightly regulated by the conformational change of the C-terminal peptide of KaiC called the "A-loop" between the exposed and the buried states, a process induced by the time-course binding events of KaiA and KaiB to KaiC. There are three putative hydrogen-bond forming residues of the A-loop that are important for stabilizing its buried conformation. Substituting the residues with alanine enabled us to observe KaiB's role in dephosphorylating hyperphosphorylated KaiC, independent of KaiA's effect. We found a novel role of KaiB that its binding to KaiC induces the A-loop toward its buried conformation, which in turn activates the autodephosphorylation of KaiC. In addition to its traditional role of sequestering KaiA, KaiB's binding contributes to the robustness of cyclic KaiC phosphorylation by inhibiting it during the dephosphorylation phase, effectively shifting the equilibrium toward the correct phase of the clock.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA