Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 55(1): 177-90, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26652771

RESUMEN

A series of novel ferrocene (Fc) functionalized Ru(III) complexes was synthesized and characterized. These compounds are derivatives of the anti-metastatic Ru(III) complex imidazolium [trans-RuCl4(1H-imidazole) (DMSO-S)] (NAMI-A) and are derived from its pyridine analogue (NAMI-Pyr), with direct coupling of Fc to pyridine at the 4 or 3 positions, or at the 4 position via a two-carbon linker, which is either unsaturated (vinyl) or saturated (ethyl). Electron paramagnetic resonance (EPR) and UV-vis spectroscopic studies of the ligand exchange processes of the compounds in phosphate buffered saline (PBS) report similar solution behavior to NAMI-Pyr. However, the complex with Fc substitution at the 3 position of the coordinated pyridine shows greater solution stability, through resistance to the formation of oligomeric species. Further EPR studies of the complexes with human serum albumin (hsA) indicate that the Fc groups enhance noncoordinate interactions with the protein and help to inhibit the formation of protein-coordinated species, suggesting the potential for enhanced bioavailability. Cyclic voltammetry measurements demonstrate that the Fc groups modestly reduce the reduction potential of the Ru(III) center as compared to NAMI-Pyr, while the reduction potentials of the Fc moieties of the four compounds vary by 217 mV, with the longer linkers giving significantly lower values of E1/2. EPR spectra of the compounds with 2-carbon linkers show the formation of a high-spin Fe(III) species (S = 5/2) in PBS with a distinctive signal at g = 4.3, demonstrating oxidation of the Fe(II) ferrocene center and likely reflecting degradation products. Density functional theory calculations and paramagnetic (1)H NMR describe delocalization of spin density onto the ligands and indicate that the vinyl linker could be a potential pathway for electron transfer between the Ru and Fe centers. In the case of the ethyl linker, electron transfer is suggested to occur via an indirect mechanism enabled by the greater flexibility of the ligand. In vitro assays with the SW480 cell line reveal cytotoxicity induced by the ruthenium ferrocenylpyridine complexes that is at least an order of magnitude higher than the unfunctionalized complex, NAMI-Pyr. Furthermore, migration studies with LNCaP cells reveal that Fc functionalization does not reduce the ability of the compounds to inhibit cell motility. Overall, these studies demonstrate that NAMI-A-type compounds can be functionalized with redox-active ligands to produce both cytotoxic and anti-metastatic activity.


Asunto(s)
Dimetilsulfóxido/análogos & derivados , Compuestos Ferrosos/química , Metástasis de la Neoplasia/prevención & control , Compuestos Organometálicos/química , Piridinas/química , Cristalografía por Rayos X , Dimetilsulfóxido/química , Dimetilsulfóxido/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Metalocenos , Estructura Molecular , Compuestos Organometálicos/farmacología , Compuestos de Rutenio
2.
Chemistry ; 19(50): 17031-42, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24203647

RESUMEN

A series of pyridine-based derivatives of the clinically successful Ru(III)-based complexes indazolium [trans-RuCl4(1H-indazole)2] (KP1019) and sodium [trans-RuCl4(1H-indazole)2] (KP1339) have been synthesized to probe the effect of hydrophobic interactions with human serum albumin (hsA) on anticancer activity. The solution behavior and protein interactions of the new compounds were characterized by using electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. These studies have revealed that incorporation of hydrophobic substituents at the 4'-position of the axial pyridine ligand stabilizes non-coordinate interactions with hsA. As a consequence, direct coordination to the protein is inhibited, which is expected to increase the bioavailability of the complexes, thus potentially leading to improved anticancer activity. By using this approach, the lifetimes of hydrophobic protein interactions were extended from 2 h for the unsubstituted pyridine complex, to more than 24 h for several derivatives. Free complexes were tested for their anticancer activity against the SW480 human colon carcinoma cell line, exhibiting low cytotoxicity. Pre-treatment with hsA improved the solubility of every compound and led to some changes in activity. Particularly notable was the difference in activity between the methyl- and dibenzyl-functionalized complexes. The former shows reduced activity after incubation with hsA, indicating reduced bioavailability due to protein coordination. The latter exhibits little activity on its own but, following treatment with hsA, exhibited significant cytotoxicity, which is consistent with its ability to form non-coordinate interactions with the protein. Overall, our studies demonstrate that non-coordinate interactions with hsA are a viable target for enhancing the activity of Ru(III)-based complexes in vivo.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias del Colon/química , Neoplasias del Colon/tratamiento farmacológico , Indazoles/química , Indazoles/farmacología , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Compuestos de Rutenio/química , Compuestos de Rutenio/farmacología , Rutenio/química , Albúmina Sérica/química , Línea Celular Tumoral , Proliferación Celular , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA