Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(23): 8685-90, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912195

RESUMEN

Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.


Asunto(s)
Arabidopsis/embriología , Forma de la Célula , Tamaño de la Célula , Semillas/citología , Algoritmos , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Giberelinas/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Microscopía Confocal , Modelos Biológicos , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Estrés Mecánico
2.
PLoS One ; 10(7): e0127905, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26154262

RESUMEN

Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake) and the shoot (photosynthesis), and their interactions through the exchange of the substrates sugar and phosphate (Pi). The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops.


Asunto(s)
Modelos Biológicos , Petunia/fisiología , Desarrollo de la Planta , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/efectos de la radiación , Simulación por Computador , Luz , Petunia/anatomía & histología , Petunia/efectos de los fármacos , Petunia/efectos de la radiación , Floema/efectos de los fármacos , Floema/fisiología , Floema/efectos de la radiación , Fosfatos/metabolismo , Fosfatos/farmacología , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/efectos de la radiación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/efectos de la radiación , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/efectos de la radiación , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA