Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 87(3): 218-26, 2007 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-17553689

RESUMEN

Antioxidant enzymes such as superoxide dismutase (SOD) play a key role in the removal of reactive oxygen species produced during visible and ultraviolet irradiance stress in microalgae and plants. However, little is known about the enzymatic antioxidative stress responses in ecologically important Antarctic marine microalgae. SOD in particular is difficult to analyze, possibly due to problems in obtaining sufficient quantities necessary for reliable and reproducible enzymatic assays. The aim of the present work was to create a sensitive, easy-to-use and reliable method for SOD determination in Antarctic microalgal material by comparing and optimizing existing protein extraction procedures and SOD assays in the marine Antarctic diatom Chaetoceros brevis. Optimization was achieved in cell disruption (sonication) and protein extraction procedures, extraction buffers, SOD assay methods (xanthine/xanthine oxidase and NBT/riboflavin photometric quantitative methods and native gel electrophoresis qualitative method) and the assay temperature. Protein extraction was optimal at low sonication amplitudes after a few pulses, irrespective of the type of buffer used. Extraction efficiency varied highly between the tested buffers; most protein was extracted in the presence of 1% of Triton X-100. SOD activity was best quantified using the NBT/riboflavin method in combination with a buffer containing potassium phosphate and Triton X-100. Moreover, the NBT/riboflavin method was demonstrated to be the most reliable and sensitive method at low temperatures (5 degrees C).


Asunto(s)
Eucariontes/enzimología , Superóxido Dismutasa/análisis , Tampones (Química) , Frío , Métodos , Proteínas/aislamiento & purificación , Sonicación
2.
Photochem Photobiol ; 85(6): 1336-45, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19709386

RESUMEN

Photoacclimation properties were investigated in two marine microalgae exposed to four ambient irradiance conditions: static photosynthetically active radiation (PAR: 400-700 nm), static PAR + UVR (280-700 nm), dynamic PAR and dynamic PAR + UVR. High light acclimated cultures of Thalassiosira weissflogii and Dunaliella tertiolecta were exposed outdoors for a maximum of 7 days. Dynamic irradiance was established by computer controlled vertical movement of 2 L bottles in a water filled basin. Immediate (<24 h), short-term (1-3 days) and long-term (4-7 days) photoacclimation was followed for antioxidants (superoxide dismutase, ascorbate peroxidase and glutathione cycling), growth and pigment pools. Changes in UVR sensitivity during photoacclimation were monitored by measuring UVR-induced inhibition of carbon assimilation under standardized UV conditions using an indoor solar simulator. Both species showed immediate antioxidant responses due to their transfer to the outdoor conditions. Furthermore, upon outdoor exposure, carbon assimilation and growth rates were reduced in both species compared with initial conditions; however, these effects were most pronounced in D. tertiolecta. Outdoor UV exposure did not alter antioxidant levels when compared with PAR-only controls in both species. In contrast, growth was significantly affected in the static UVR cultures, concurrent with significantly enhanced UVR resistance. We conclude that antioxidants play a minor role in the reinforcement of natural UVR resistance in T. weissflogii and D. tertiolecta.


Asunto(s)
Antioxidantes/química , Diatomeas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Rayos Ultravioleta , Antioxidantes/farmacología , Diatomeas/efectos de los fármacos , Diatomeas/crecimiento & desarrollo , Glutatión Reductasa/química , Biología Marina , Luz Solar
3.
J Phycol ; 44(4): 957-66, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27041614

RESUMEN

The enzyme superoxide dismutase (SOD) holds a key position in the microalgal antioxidant network. The present research focused on oxidative stress responses in the Antarctic diatom Chaetoceros brevis F. Schütt during transition to excess (including ultraviolet radiation [UVR]) and limiting irradiance conditions. Over a 4 d period, cellular responses of thiobarbituric acid reactive substances (TBARS, a general oxidative stress indicator), SOD activity, photosynthetic and xanthophyll cycle pigments, PSII efficiency, and growth were determined. In addition, oxidative responses were measured during a daily cycle. Changing irradiance conditions significantly affected growth rates of C. brevis. PSII efficiency decreased significantly during periodic excess irradiance and increased under low irradiance conditions. Transition to excess irradiance increased the ratio of xanthophyll to light-harvesting pigments, whereas the opposite was observed for cultures transferred to low irradiance. This acclimation process was completed after 2 d in the new irradiance environment. SOD activity increased significantly after the first day regardless of the new irradiance environment but returned to preexposure values on the fourth day. We hypothesize that SOD activity may be temporarily elevated in C. brevis after irradiance shifts, thereby reducing oxidative stress when photoacclimation is in progress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA