RESUMEN
Perivascular spaces (PVS) and blood-brain barrier (BBB) disruption are two key features of cerebral small vessel disease (cSVD) and neurodegenerative diseases that have been linked to cognitive impairment and are involved in the cerebral waste clearance system. Magnetic resonance imaging (MRI) offers the possibility to study these pathophysiological processes noninvasively in vivo. This educational review provides an overview of the MRI techniques used to assess PVS functionality and BBB disruption. MRI-visible PVS can be scored on structural images by either (subjectively) counting or (automatically) delineating the PVS. We highlight emerging (diffusion) techniques to measure proxies of perivascular fluid and its movement, which may provide a more comprehensive understanding of the role of PVS in diseases. For the measurement of BBB disruption, we explain the most commonly used MRI technique, dynamic contrast-enhanced (DCE) MRI, as well as a more recently developed technique based on arterial spin labeling (ASL). DCE MRI and ASL are thought to measure complementary characteristics of the BBB. Furthermore, we describe clinical studies that have utilized these MRI techniques in cSVD and neurodegenerative diseases, particularly Alzheimer's disease (AD). These studies demonstrate the role of PVS and BBB dysfunction in these diseases and provide insight into the large overlap, but also into the differences between cSVD and AD. Overall, MRI techniques may provide valuable insights into the pathophysiological mechanisms underlying these diseases and have the potential to be used as markers for disease progression and treatment response. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Enfermedades Vasculares , Humanos , Barrera Hematoencefálica/patología , Enfermedades Neurodegenerativas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedades Vasculares/patologíaRESUMEN
INTRODUCTION: This study assessed the association of plasma biomarkers of endothelial dysfunction with cognitive performance and decline. METHODS: Data from 9414 individuals from eight Dutch cohorts were included (Ø age-range: 57-93 years). Plasma biomarkers of endothelial dysfunction (soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin) were combined into a standardized composite score. Cognitive outcomes included executive function, processing speed, immediate and delayed memory, attention, and language. Linear regressions and linear mixed models were run in the individual cohorts and standardized coefficients were subsequently pooled using random-effects meta-analyses. RESULTS: A higher endothelial dysfunction composite score was cross-sectionally associated with worse performance on executive function, processing speed, delayed memory, and attention, but not immediate memory or language (pooled ß-range: -0.04, -0.02). We found no association with change in cognition over time. DISCUSSION: This comprehensive two-step, individual participant data (IPD) meta-analysis showed a small, consistent cross-sectional association between endothelial dysfunction and worse cognitive performance across multiple domains but no support for a longitudinal association. HIGHLIGHTS: Prior evidence on endothelial dysfunction (ED) biomarkers and cognition is conflicting. This two-step, individual participant data (IPD) meta-analysis used data from eight Dutch cohorts. ED was consistently associated with concurrent cognition. ED was not associated with a change in cognition over time. The association of ED with current cognition may be generic.
RESUMEN
BACKGROUND: Type 2 diabetes mellitus (T2DM) is linked with several neurodegenerative and psychiatric disorders, either as a comorbid condition or as a risk factor. We aimed to expand the evidence by examining associations with a broad range of brain disorders (psychiatric and neurological disorders, excluding late-onset neurodegenerative disorders), while also accounting for the temporal order of T2DM and these brain disorders. METHODS: In a population-based cohort-study of 1,883,198 Danish citizens, born 1955-1984 and followed until end of 2016, we estimated associations between T2DM and 16 brain disorders first diagnosed between childhood and mid-adulthood. We calculated odds ratios (OR) and hazard ratios (HR) with 95% confidence intervals (CI) in temporally ordered analyses (brain disorder diagnosis after T2DM and vice versa), adjusted for sex, age, follow-up, birth year, and parental factors. RESULTS: A total of 67,660 (3.6%) of the study population were identified as T2DM cases after age 30 and by a mean age of 45 years (SD of 8 years). T2DM was associated with most psychiatric disorders. Strongest associations were seen with other (i.e. non-anorectic) eating disorders (OR [95% CI]: 2.64 [2.36-2.94]) and schizophrenia spectrum disorder (2.73 [2.63-2.84]). Among neurological disorders especially inflammatory brain diseases (1.73 [1.57-1.91]) and epilepsy (1.67 [1.60-1.75]) were associated with T2DM. Most associations remained in both directions in the temporally ordered analyses. For most psychiatric disorders, associations were strongest in females. CONCLUSIONS: T2DM was associated with several psychiatric and neurological disorders, and most associations were consistently found for both temporal order of disorders. This suggests a shared etiology of T2DM and those brain disorders. This study can form the starting point for studies directed at further elucidating potential causal links between disorders and shared biological mechanisms.
Asunto(s)
Diabetes Mellitus Tipo 2 , Epilepsia , Adulto , Niño , Estudios de Cohortes , Dinamarca , Femenino , Humanos , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Factores de RiesgoRESUMEN
INTRODUCTION: The evidence for characteristics of persons with subjective cognitive decline (SCD) associated with amyloid positivity is limited. METHODS: In 1640 persons with SCD from 20 Amyloid Biomarker Study cohort, we investigated the associations of SCD-specific characteristics (informant confirmation, domain-specific complaints, concerns, feelings of worse performance) demographics, setting, apolipoprotein E gene (APOE) ε4 carriership, and neuropsychiatric symptoms with amyloid positivity. RESULTS: Between cohorts, amyloid positivity in 70-year-olds varied from 10% to 76%. Only older age, clinical setting, and APOE ε4 carriership showed univariate associations with increased amyloid positivity. After adjusting for these, lower education was also associated with increased amyloid positivity. Only within a research setting, informant-confirmed complaints, memory complaints, attention/concentration complaints, and no depressive symptoms were associated with increased amyloid positivity. Feelings of worse performance were associated with less amyloid positivity at younger ages and more at older ages. DISCUSSION: Next to age, setting, and APOE ε4 carriership, SCD-specific characteristics may facilitate the identification of amyloid-positive individuals.
Asunto(s)
Amiloidosis , Disfunción Cognitiva , Humanos , Amiloide , Proteínas Amiloidogénicas , Apolipoproteína E4/genética , Biomarcadores , Encéfalo/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/psicología , Tomografía de Emisión de PositronesRESUMEN
INTRODUCTION: Apolipoprotein E (APOE) ε4 is the major genetic risk factor for Alzheimer's disease (AD), but its prevalence is unclear because earlier studies did not require biomarker evidence of amyloid ß (Aß) pathology. METHODS: We included 3451 Aß+ subjects (853 AD-type dementia, 1810 mild cognitive impairment, and 788 cognitively normal). Generalized estimating equation models were used to assess APOE ε4 prevalence in relation to age, sex, education, and geographical location. RESULTS: The APOE ε4 prevalence was 66% in AD-type dementia, 64% in mild cognitive impairment, and 51% in cognitively normal, and it decreased with advancing age in Aß+ cognitively normal and Aß+ mild cognitive impairment (P < .05) but not in Aß+ AD dementia (P = .66). The prevalence was highest in Northern Europe but did not vary by sex or education. DISCUSSION: The APOE ε4 prevalence in AD was higher than that in previous studies, which did not require presence of Aß pathology. Furthermore, our results highlight disease heterogeneity related to age and geographical location.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Disfunción Cognitiva/metabolismo , Anciano , Alelos , Biomarcadores/líquido cefalorraquídeo , Europa (Continente) , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones , PrevalenciaRESUMEN
IMPORTANCE: Amyloid-ß positron emission tomography (PET) imaging allows in vivo detection of fibrillar plaques, a core neuropathological feature of Alzheimer disease (AD). Its diagnostic utility is still unclear because amyloid plaques also occur in patients with non-AD dementia. OBJECTIVE: To use individual participant data meta-analysis to estimate the prevalence of amyloid positivity on PET in a wide variety of dementia syndromes. DATA SOURCES: The MEDLINE and Web of Science databases were searched from January 2004 to April 2015 for amyloid PET studies. STUDY SELECTION: Case reports and studies on neurological or psychiatric diseases other than dementia were excluded. Corresponding authors of eligible cohorts were invited to provide individual participant data. DATA EXTRACTION AND SYNTHESIS: Data were provided for 1359 participants with clinically diagnosed AD and 538 participants with non-AD dementia. The reference groups were 1849 healthy control participants (based on amyloid PET) and an independent sample of 1369 AD participants (based on autopsy). MAIN OUTCOMES AND MEASURES: Estimated prevalence of positive amyloid PET scans according to diagnosis, age, and apolipoprotein E (APOE) ε4 status, using the generalized estimating equations method. RESULTS: The likelihood of amyloid positivity was associated with age and APOE ε4 status. In AD dementia, the prevalence of amyloid positivity decreased from age 50 to 90 years in APOE ε4 noncarriers (86% [95% CI, 73%-94%] at 50 years to 68% [95% CI, 57%-77%] at 90 years; n = 377) and to a lesser degree in APOE ε4 carriers (97% [95% CI, 92%-99%] at 50 years to 90% [95% CI, 83%-94%] at 90 years; n = 593; P < .01). Similar associations of age and APOE ε4 with amyloid positivity were observed in participants with AD dementia at autopsy. In most non-AD dementias, amyloid positivity increased with both age (from 60 to 80 years) and APOE ε4 carriership (dementia with Lewy bodies: carriers [n = 16], 63% [95% CI, 48%-80%] at 60 years to 83% [95% CI, 67%-92%] at 80 years; noncarriers [n = 18], 29% [95% CI, 15%-50%] at 60 years to 54% [95% CI, 30%-77%] at 80 years; frontotemporal dementia: carriers [n = 48], 19% [95% CI, 12%-28%] at 60 years to 43% [95% CI, 35%-50%] at 80 years; noncarriers [n = 160], 5% [95% CI, 3%-8%] at 60 years to 14% [95% CI, 11%-18%] at 80 years; vascular dementia: carriers [n = 30], 25% [95% CI, 9%-52%] at 60 years to 64% [95% CI, 49%-77%] at 80 years; noncarriers [n = 77], 7% [95% CI, 3%-18%] at 60 years to 29% [95% CI, 17%-43%] at 80 years. CONCLUSIONS AND RELEVANCE: Among participants with dementia, the prevalence of amyloid positivity was associated with clinical diagnosis, age, and APOE genotype. These findings indicate the potential clinical utility of amyloid imaging for differential diagnosis in early-onset dementia and to support the clinical diagnosis of participants with AD dementia and noncarrier APOE ε4 status who are older than 70 years.
Asunto(s)
Factores de Edad , Péptidos beta-Amiloides/análisis , Apolipoproteína E4/genética , Encéfalo/patología , Demencia/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Prevalencia , Factores de RiesgoRESUMEN
IMPORTANCE: Cerebral amyloid-ß aggregation is an early pathological event in Alzheimer disease (AD), starting decades before dementia onset. Estimates of the prevalence of amyloid pathology in persons without dementia are needed to understand the development of AD and to design prevention studies. OBJECTIVE: To use individual participant data meta-analysis to estimate the prevalence of amyloid pathology as measured with biomarkers in participants with normal cognition, subjective cognitive impairment (SCI), or mild cognitive impairment (MCI). DATA SOURCES: Relevant biomarker studies identified by searching studies published before April 2015 using the MEDLINE and Web of Science databases and through personal communication with investigators. STUDY SELECTION: Studies were included if they provided individual participant data for participants without dementia and used an a priori defined cutoff for amyloid positivity. DATA EXTRACTION AND SYNTHESIS: Individual records were provided for 2914 participants with normal cognition, 697 with SCI, and 3972 with MCI aged 18 to 100 years from 55 studies. MAIN OUTCOMES AND MEASURES: Prevalence of amyloid pathology on positron emission tomography or in cerebrospinal fluid according to AD risk factors (age, apolipoprotein E [APOE] genotype, sex, and education) estimated by generalized estimating equations. RESULTS: The prevalence of amyloid pathology increased from age 50 to 90 years from 10% (95% CI, 8%-13%) to 44% (95% CI, 37%-51%) among participants with normal cognition; from 12% (95% CI, 8%-18%) to 43% (95% CI, 32%-55%) among patients with SCI; and from 27% (95% CI, 23%-32%) to 71% (95% CI, 66%-76%) among patients with MCI. APOE-ε4 carriers had 2 to 3 times higher prevalence estimates than noncarriers. The age at which 15% of the participants with normal cognition were amyloid positive was approximately 40 years for APOE ε4ε4 carriers, 50 years for ε2ε4 carriers, 55 years for ε3ε4 carriers, 65 years for ε3ε3 carriers, and 95 years for ε2ε3 carriers. Amyloid positivity was more common in highly educated participants but not associated with sex or biomarker modality. CONCLUSIONS AND RELEVANCE: Among persons without dementia, the prevalence of cerebral amyloid pathology as determined by positron emission tomography or cerebrospinal fluid findings was associated with age, APOE genotype, and presence of cognitive impairment. These findings suggest a 20- to 30-year interval between first development of amyloid positivity and onset of dementia.
Asunto(s)
Péptidos beta-Amiloides/análisis , Apolipoproteína E4/genética , Encéfalo/patología , Disfunción Cognitiva/patología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Líquido Cefalorraquídeo/química , Demencia/patología , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Prevalencia , Factores de RiesgoRESUMEN
OBJECTIVE: Type 2 diabetes and glucose metabolism have previously been linked to Alzheimer disease (AD). Yet, findings on the relation of glucose metabolism with amyloid-ß and tau pathology later in life remain unclear. RESEARCH DESIGN AND METHODS: We included 288 participants (mean age 43.1 years, SD 10.7, range 20-70 years) without dementia, from the Framingham Heart Study, who had available measures of glucose metabolism (i.e., one-time fasting plasma glucose and insulin) and positron emission tomography (PET) measures of amyloid-ß and/or tau 14 years later. We performed linear regression analyses to test associations of plasma glucose (continuously and categorically; elevated defined as >100 mg/dL), plasma insulin, homeostatic model assessment for insulin resistance (HOMA-IR) with amyloid-ß or tau load on PET. When significant, we explored whether age, sex, and APOE ε4 allele carriership (AD genetic risk) modified these associations. RESULTS: Our findings indicated that elevated plasma glucose was associated with greater tau load 14 years later (B [95% CI] = 0.03 [0.01-0.05], P = 0.024 after false discovery rate [FDR] correction) but not amyloid-ß. APOE ε4 carriership modified this association (B [95% CI] = -0.08 [-0.12 to -0.03], P = 0.001), indicating that the association was only present in APOE ε4 noncarriers (n = 225). Plasma insulin and HOMA-IR were not associated with amyloid-ß or tau load 14 years later after FDR correction. CONCLUSIONS: Our findings suggest that glucose metabolism is associated with increased future tau but not amyloid-ß load. This provides relevant knowledge for prevention strategies and prognostics to improve health care.
Asunto(s)
Péptidos beta-Amiloides , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Persona de Mediana Edad , Masculino , Tomografía de Emisión de Positrones/métodos , Péptidos beta-Amiloides/metabolismo , Femenino , Proteínas tau/metabolismo , Adulto , Anciano , Glucemia/metabolismo , Adulto Joven , Glucosa/metabolismo , Insulina/sangre , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genéticaRESUMEN
Conflicting evidence exists on the relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) biomarkers. Therefore, we conducted a random-effects meta-analysis to evaluate the correlation of glucose metabolism measures (glycated hemoglobin, fasting blood glucose, insulin resistance indices) and DM status with AD biomarkers of amyloid-ß and tau measured by positron emission tomography or cerebrospinal fluid. We selected 37 studies from PubMed and Embase, including 11,694 individuals. More impaired glucose metabolism and DM status were associated with higher tau biomarkers (r=0.11[0.03-0.18], p=0.008; I2=68%), but were not associated with amyloid-ß biomarkers (r=-0.06[-0.13-0.01], p=0.08; I2=81%). Meta-regression revealed that glucose metabolism and DM were specifically associated with tau biomarkers in population settings (p=0.001). Furthermore, more impaired glucose metabolism and DM status were associated with lower amyloid-ß biomarkers in memory clinic settings (p=0.004), and in studies with a higher prevalence of dementia (p<0.001) or lower cognitive scores (p=0.04). These findings indicate that DM is associated with biomarkers of tau but not with amyloid-ß. This knowledge is valuable for improving dementia and DM diagnostics and treatment.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Biomarcadores , Disfunción Cognitiva/metabolismo , Glucosa , Fragmentos de Péptidos , Tomografía de Emisión de Positrones/métodos , Proteínas tauRESUMEN
Alzheimer's disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its etiology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neurodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID that could increase our insights into their molecular underpinnings. We then performed functional enrichment analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analyses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards "energy metabolism" as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new AD treatments.
Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Insulina , Humanos , Enfermedad de Alzheimer/genética , Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Obesidad/genética , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismoRESUMEN
The co-occurrence of insulin resistance (IR)-related metabolic conditions with neuropsychiatric disorders is a complex public health challenge. Evidence of the genetic links between these phenotypes is emerging, but little is currently known about the genomic regions and biological functions that are involved. To address this, we performed Local Analysis of [co]Variant Association (LAVA) using large-scale (N=9,725-933,970) genome-wide association studies (GWASs) results for three IR-related conditions (type 2 diabetes mellitus, obesity, and metabolic syndrome) and nine neuropsychiatric disorders. Subsequently, positional and expression quantitative trait locus (eQTL)-based gene mapping and downstream functional genomic analyses were performed on the significant loci. Patterns of negative and positive local genetic correlations (|rg|=0.21-1, pFDR<0.05) were identified at 109 unique genomic regions across all phenotype pairs. Local correlations emerged even in the absence of global genetic correlations between IR-related conditions and Alzheimer's disease, bipolar disorder, and Tourette's syndrome. Genes mapped to the correlated regions showed enrichment in biological pathways integral to immune-inflammatory function, vesicle trafficking, insulin signalling, oxygen transport, and lipid metabolism. Colocalisation analyses further prioritised 10 genetically correlated regions for likely harbouring shared causal variants, displaying high deleterious or regulatory potential. These variants were found within or in close proximity to genes, such as SLC39A8 and HLA-DRB1, that can be targeted by supplements and already known drugs, including omega-3/6 fatty acids, immunomodulatory, antihypertensive, and cholesterol-lowering drugs. Overall, our findings underscore the complex genetic landscape of IR-neuropsychiatric multimorbidity, advocating for an integrated disease model and offering novel insights for research and treatment strategies in this domain.
RESUMEN
Background: Alzheimer's disease pathology and vascular burden are highly prevalent and often co-occur in elderly. It remains unclear how both relate to cognitive decline. Objective: To investigate whether amyloid abnormality and vascular burden synergistically contribute to cognitive decline in a memory clinic population. Methods: We included 227 patients from Maastricht and Aachen memory clinics. Amyloid abnormality (A+) was defined by CSF Aß42 using data-driven cut-offs. Vascular burden (V+) was defined as having moderate to severe white matter hyperintensities, or any microbleeds, macrohemorrhage or infarcts on MRI. Longitudinal change in global cognition, memory, processing speed, executive functioning, and verbal fluency was analysed across the A-V-, A-V+, A+V-, A+V+ groups by linear mixed models. Additionally, individual MRI measures, vascular risk and vascular disease were used as V definitions. Results: At baseline, the A+V+ group scored worse on global cognition and verbal fluency compared to all other groups, and showed worse memory compared to A-V+ and A-V- groups. Over time (mean 2.7+ - 1.5 years), A+V+ and A+V- groups showed faster global cognition decline than A-V+ and A-V- groups. Only the A+V- group showed decline on memory and verbal fluency. The A-V+ group did not differ from the A-V- group. Individual MRI vascular measures only indicated an independent association of microbleeds with executive functioning decline. Findings were similar using other V definitions. Conclusions: Our study demonstrates that amyloid abnormality predicts cognitive decline independent from vascular burden in a memory clinic population. Vascular burden shows a minor contribution to cognitive decline in these patients. This has important prognostic implications.
RESUMEN
The prevalence of somatic insulinopathies, like metabolic syndrome (MetS), obesity, and type 2 diabetes mellitus (T2DM), is higher in Alzheimer's disease (AD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD). Dysregulation of insulin signalling has been implicated in these neuropsychiatric disorders, and shared genetic factors might partly underlie this observed multimorbidity. We investigated the genetic overlap between AD, ASD, and OCD with MetS, obesity, and T2DM by estimating pairwise global genetic correlations using the summary statistics of the largest available genome-wide association studies for these phenotypes. Having tested these hypotheses, other potential brain "insulinopathies" were also explored by estimating the genetic relationship of six additional neuropsychiatric disorders with nine insulin-related diseases/traits. Stratified covariance analyses were then performed to investigate the contribution of insulin-related gene sets. Significant negative genetic correlations were found between OCD and MetS (rg = -0.315, p = 3.9 × 10-8), OCD and obesity (rg = -0.379, p = 3.4 × 10-5), and OCD and T2DM (rg = -0.172, p = 3 × 10-4). Significant genetic correlations with insulin-related phenotypes were also found for anorexia nervosa (AN), attention-deficit/hyperactivity disorder (ADHD), major depressive disorder, and schizophrenia (p < 6.17 × 10-4). Stratified analyses showed negative genetic covariances between AD, ASD, OCD, ADHD, AN, bipolar disorder, schizophrenia and somatic insulinopathies through gene sets related to insulin signalling and insulin receptor recycling, and positive genetic covariances between AN and T2DM, as well as ADHD and MetS through gene sets related to insulin processing/secretion (p < 2.06 × 10-4). Overall, our findings suggest the existence of two clusters of neuropsychiatric disorders, in which the genetics of insulin-related diseases/traits may exert divergent pleiotropic effects. These results represent a starting point for a new research line on "insulinopathies" of the brain.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Depresivo Mayor , Diabetes Mellitus Tipo 2 , Trastorno por Déficit de Atención con Hiperactividad/psicología , Trastorno del Espectro Autista/psicología , Encéfalo , Trastorno Depresivo Mayor/genética , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Humanos , InsulinaRESUMEN
Clinical and genomic studies have shown an overlap between neuropsychiatric disorders and insulin resistance (IR)-related somatic conditions, including obesity, type 2 diabetes, and cardiovascular diseases. Impaired cognition is often observed among neuropsychiatric disorders, where multiple cognitive domains may be affected. In this review, we aimed to summarise previous evidence on the relationship between IR-related diseases/traits and cognitive performance in the large UK Biobank study cohort. Electronic searches were conducted on PubMed, Scopus, and Web of Science until April 2022. Eighteen articles met the inclusion criteria and were qualitatively reviewed. Overall, there is substantial evidence for an association between IR-related cardio-metabolic diseases/traits and worse performance on various cognitive domains, which is largely independent of possible confoundings. The most consistent findings referred to IR-related associations with poorer verbal and numerical reasoning ability, as well as slower processing speed. The observed associations might be mediated by alterations in immune-inflammation, brain integrity/connectivity, and/or comorbid somatic or psychiatric diseases/traits. Our findings provide impetus for further research into the underlying neurobiology and possible new therapeutic targets.
Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Bancos de Muestras Biológicas , Cognición , Reino Unido/epidemiologíaRESUMEN
IMPORTANCE: One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design. OBJECTIVE: To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria. EXPOSURES: Alzheimer disease biomarkers detected on PET or in CSF. MAIN OUTCOMES AND MEASURES: Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations. RESULTS: Among the 19â¯097 participants (mean [SD] age, 69.1 [9.8] years; 10â¯148 women [53.1%]) included, 10â¯139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P = .04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P = .004), subjective cognitive decline (9%; 95% CI, 3%-15%; P = .005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P = .004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P = .18). CONCLUSIONS AND RELEVANCE: This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/epidemiología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas Amiloidogénicas , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/epidemiología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/líquido cefalorraquídeo , Tomografía de Emisión de Positrones , Prevalencia , Proteínas tau/líquido cefalorraquídeoRESUMEN
Advanced Alzheimer's disease (AD) is characterized by higher noradrenaline metabolite levels that may be associated with AD pathology. The locus coeruleus (LC) is the main site for cerebral noradrenaline synthesis and LC volume loss occurs as early as Braak stage 1. This study investigates the association between noradrenergic turnover and brain morphology, and the modifying effect of AD pathology. The study sample included 77 memory clinic patients (37 cognitively unimpaired and 40 cognitively impaired (mild cognitive impairment or AD dementia)). Cortical thickness and volumetric analyses were performed using FreeSurfer. Cerebrospinal fluid was analyzed for noradrenergic metabolite 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), Aß42 and phosphorylated tau. Higher MHPG was associated with lower cortical thickness and hippocampal volume at lower, but subthreshold, levels of Aß42 and at higher p-tau levels. These associations remained significant after adding APOE-E4 or cognitive status as covariates. Our results suggest that greater MHPG together with worse AD pathology contributes to neurodegeneration, possibly before significant amyloidosis. The noradrenergic system may play an important role in early detection of AD-related processes.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Corteza Cerebral/patología , Locus Coeruleus/metabolismo , Locus Coeruleus/patología , Norepinefrina/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Cognición , Femenino , Humanos , Masculino , Metoxihidroxifenilglicol/líquido cefalorraquídeo , Persona de Mediana Edad , Degeneración Nerviosa , Tamaño de los Órganos , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeoRESUMEN
The association of dementia-related pathologies with cognition is hypothesized to decrease as age advances. We examined this in 413 persons without cognitive impairment at baseline who completed annual cognitive evaluations during a mean of 10.4 years. After death, neuropathologic examinations quantified beta amyloid plaque load, neurofibrillary tangles, and transactive response DNA-binding protein 43 pathology, and identified Lewy bodies, hippocampal sclerosis, and gross and microscopic cerebral infarcts. We tested whether age at death modified associations of these neuropathologies with the nonlinear trajectory of cognitive decline using mixed-effects change point models. The rate of global cognitive decline was gradual at first and then increased approximately 10-fold in the last 3 years of life. After adjustment for all other pathologic indices, tangle density, gross infarcts, Lewy bodies, and transactive response DNA-binding protein 43 were associated with global cognitive decline. However, the deleterious association of dementia-related pathologies with cognitive decline did not systematically vary by age. This suggests that the neuropathologic mechanisms underlying late-life cognitive decline do not substantially differ across the spectrum of age.
Asunto(s)
Envejecimiento/patología , Envejecimiento/psicología , Cognición , Demencia/patología , Demencia/psicología , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas de Unión al ADN/metabolismo , Demencia/metabolismo , Femenino , Humanos , Cuerpos de Lewy/patología , Masculino , Ovillos Neurofibrilares/patologíaRESUMEN
We investigated whether amyloid-ß (Aß) and tau affected cognition in cognitively normal (CN) individuals, and whether norms for neuropsychological tests based on biomarker-negative individuals would improve early detection of dementia. We included 907 CN individuals from 8 European cohorts and from the Alzheimer's disease Neuroimaging Initiative. All individuals were aged above 40, had Aß status and neuropsychological data available. Linear mixed models were used to assess the associations of Aß and tau with five neuropsychological tests assessing memory (immediate and delayed recall of Auditory Verbal Learning Test, AVLT), verbal fluency (Verbal Fluency Test, VFT), attention and executive functioning (Trail Making Test, TMT, part A and B). All test except the VFT were associated with Aß status and this influence was augmented by age. We found no influence of tau on any of the cognitive tests. For the AVLT Immediate and Delayed recall and the TMT part A and B, we calculated norms in individuals without Aß pathology (Aß- norms), which we validated in an independent memory-clinic cohort by comparing their predictive accuracy to published norms. For memory tests, the Aß- norms rightfully identified an additional group of individuals at risk of dementia. For non-memory test we found no difference. We confirmed the relationship between Aß and cognition in cognitively normal individuals. The Aß- norms for memory tests in combination with published norms improve prognostic accuracy of dementia.
RESUMEN
Importance: Cerebral amyloid-ß aggregation is an early event in Alzheimer disease (AD). Understanding the association between amyloid aggregation and cognitive manifestation in persons without dementia is important for a better understanding of the course of AD and for the design of prevention trials. Objective: To investigate whether amyloid-ß aggregation is associated with cognitive functioning in persons without dementia. Design, Setting, and Participants: This cross-sectional study included 2908 participants with normal cognition and 4133 with mild cognitive impairment (MCI) from 53 studies in the multicenter Amyloid Biomarker Study. Normal cognition was defined as having no cognitive concerns for which medical help was sought and scores within the normal range on cognitive tests. Mild cognitive impairment was diagnosed according to published criteria. Study inclusion began in 2013 and is ongoing. Data analysis was performed in January 2017. Main Outcomes and Measures: Global cognitive performance as assessed by the Mini-Mental State Examination (MMSE) and episodic memory performance as assessed by a verbal word learning test. Amyloid aggregation was measured with positron emission tomography or cerebrospinal fluid biomarkers and dichotomized as negative (normal) or positive (abnormal) according to study-specific cutoffs. Generalized estimating equations were used to examine the association between amyloid aggregation and low cognitive scores (MMSE score ≤27 or memory z score≤-1.28) and to assess whether this association was moderated by age, sex, educational level, or apolipoprotein E genotype. Results: Among 2908 persons with normal cognition (mean [SD] age, 67.4 [12.8] years), amyloid positivity was associated with low memory scores after age 70 years (mean difference in amyloid positive vs negative, 4% [95% CI, 0%-7%] at 72 years and 21% [95% CI, 10%-33%] at 90 years) but was not associated with low MMSE scores (mean difference, 3% [95% CI, -1% to 6%], P = .16). Among 4133 patients with MCI (mean [SD] age, 70.2 [8.5] years), amyloid positivity was associated with low memory (mean difference, 16% [95% CI, 12%-20%], P < .001) and low MMSE (mean difference, 14% [95% CI, 12%-17%], P < .001) scores, and this association decreased with age. Low cognitive scores had limited utility for screening of amyloid positivity in persons with normal cognition and those with MCI. In persons with normal cognition, the age-related increase in low memory score paralleled the age-related increase in amyloid positivity with an intervening period of 10 to 15 years. Conclusions and Relevance: Although low memory scores are an early marker of amyloid positivity, their value as a screening measure for early AD among persons without dementia is limited.