Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Clin Chem Lab Med ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39027966

RESUMEN

OBJECTIVES: This article defines analytical performance specifications (APS) for evaluating laboratory proficiency through an external quality assessment scheme. METHODS: Standard deviations for proficiency assessment were derived from Thompson's characteristic function applied to robust data calculated from participants' submissions in the Occupational and Environmental Laboratory Medicine (OELM) external quality assurance scheme for trace elements in serum, whole blood and urine. Characteristic function was based on two parameters: (1) ß - the average coefficient of variation (CV) at high sample concentrations; (2) α - the average standard deviation (SD) at low sample concentrations. APSs were defined as 1.65 standard deviations calculated by Thompson's approach. Comparison between OELM robust data and characteristic function were used to validate the model. RESULTS: Application of the characteristic function allowed calculated APS for 18 elements across three matrices. Some limitations were noted, particularly for elements (1) with no sample concentrations near analytical technique limit of detection; (2) exhibiting high robust CV at high concentration; (3) exhibiting high analytical variability such as whole blood Tl and urine Pb; (4) with an unbalanced number of robust SD above and under the characteristic function such as whole blood Mn and serum Al and Zn. CONCLUSIONS: The characteristic function was a useful means of deriving APS for trace elements in biological fluids where biological variation data or outcome studies were not available. However, OELM external quality assurance scheme data suggests that the characteristic functions are not appropriate for all elements.

2.
Phys Rev Lett ; 130(5): 058201, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36800471

RESUMEN

Chiral active matter is enjoying a rapid increase of interest, spurred by the rich variety of asymmetries that can be attained in, e.g., the shape or self-propulsion mechanism of active particles. Though this has already led to the observance of so-called chiral crystals, active chiral glasses remain largely unexplored. A possible reason for this could be the naive expectation that interactions dominate the glassy dynamics and the details of the active motion become increasingly less relevant. Here, we show that quite the opposite is true by studying the glassy dynamics of interacting chiral active Brownian particles. We demonstrate that when our chiral fluid is pushed to glassy conditions, it exhibits highly nontrivial dynamics, especially compared to a standard linear active fluid such as common active Brownian particles. Despite the added complexity, we are still able to present a full rationalization for all identified dynamical regimes. Most notably, we introduce a new "hammering" mechanism, unique to rapidly spinning particles in high-density conditions, that can fluidize a chiral active solid.

3.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36779972

RESUMEN

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

4.
J Chem Phys ; 159(1)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37403858

RESUMEN

Dense or glassy active matter, as a result of its remarkable resemblance to passive glass-forming materials, is enjoying increasing scientific interest. To better grasp the subtle effect of active motion on the process of vitrification, a number of active mode-coupling theories (MCTs) have recently been developed. These have proven capable of qualitatively predicting important parts of the active glassy phenomenology. However, most efforts so far have only considered single-component materials, and their derivations are arguably more complex than the standard MCT case, which might hinder broader usage. Here we present a detailed derivation of a distinct active MCT for mixtures of athermal self-propelled particles that is more transparent than previously introduced versions. The key insight is that we can follow a similar strategy for our overdamped active system as is typically used for passive underdamped MCT. Interestingly, when only considering one particle species, our theory gives the exact same result as the one obtained in previous work, which employed a highly different mode-coupling strategy. Moreover, we assess the quality of the theory and its novel extension to multi-component materials by using it to predict the dynamics of a Kob-Andersen mixture of athermal active Brownian quasi-hard spheres. We demonstrate that our theory is able to capture all qualitative features, most notably the location of the optimum of the dynamics when the persistence length and cage length coincide, for each combination of particle types.

5.
J Chem Phys ; 158(24)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37366311

RESUMEN

Memory effects are ubiquitous in a wide variety of complex physical phenomena, ranging from glassy dynamics and metamaterials to climate models. The Generalized Langevin Equation (GLE) provides a rigorous way to describe memory effects via the so-called memory kernel in an integro-differential equation. However, the memory kernel is often unknown, and accurately predicting or measuring it via, e.g., a numerical inverse Laplace transform remains a herculean task. Here, we describe a novel method using deep neural networks (DNNs) to measure memory kernels from dynamical data. As a proof-of-principle, we focus on the notoriously long-lived memory effects of glass-forming systems, which have proved a major challenge to existing methods. In particular, we learn the operator mapping dynamics to memory kernels from a training set generated with the Mode-Coupling Theory (MCT) of hard spheres. Our DNNs are remarkably robust against noise, in contrast to conventional techniques. Furthermore, we demonstrate that a network trained on data generated from analytic theory (hard-sphere MCT) generalizes well to data from simulations of a different system (Brownian Weeks-Chandler-Andersen particles). Finally, we train a network on a set of phenomenological kernels and demonstrate its effectiveness in generalizing to both unseen phenomenological examples and supercooled hard-sphere MCT data. We provide a general pipeline, KernelLearner, for training networks to extract memory kernels from any non-Markovian system described by a GLE. The success of our DNN method applied to noisy glassy systems suggests that deep learning can play an important role in the study of dynamical systems with memory.

6.
Phys Rev Lett ; 129(14): 145501, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36240416

RESUMEN

It is widely believed that the emergence of slow glassy dynamics is encoded in a material's microstructure. First-principles theory [mode-coupling theory (MCT)] is able to predict the dramatic slowdown of the dynamics from only static two-point correlations as input, yet it cannot capture all of the observed dynamical behavior. Here we go beyond two-point spatial correlation functions by extending MCT systematically to include higher-order static and dynamic correlations. We demonstrate that only adding the static triplet direct correlations already qualitatively changes the predicted glass-transition diagram of binary hard spheres and silica. Moreover, we find a nontrivial competition between static triplet correlations that work to stabilize the glass state and dynamic higher-order correlations that destabilize it for both materials. We conclude that the conventionally neglected static triplet direct correlations as well as higher-order dynamic correlations are, in fact, non-negligible in both fragile and strong glassformers.

7.
J Chem Phys ; 157(22): 224902, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36546821

RESUMEN

Recent years have seen a rapid increase of interest in dense active materials, which, in the disordered state, share striking similarities with the conventional passive glass-forming matter. For such passive glassy materials, it is well established (at least in three dimensions) that the details of the microscopic dynamics, e.g., Newtonian or Brownian, do not influence the long-time glassy behavior. Here, we investigate whether this still holds true in the non-equilibrium active case by considering two simple and widely used active particle models, i.e., active Ornstein-Uhlenbeck particles (AOUPs) and active Brownian particles (ABPs). In particular, we seek to gain more insight into the role of the self-propulsion mechanism on the glassy dynamics by deriving a mode-coupling theory (MCT) for thermal AOUPs, which can be directly compared to a recently developed MCT for ABPs. Both theories explicitly take into account the active degrees of freedom. We solve the AOUP- and ABP-MCT equations in two dimensions and demonstrate that both models give almost identical results for the intermediate scattering function over a large variety of control parameters (packing fractions, active speeds, and persistence times). We also confirm this theoretical equivalence between the different self-propulsion mechanisms numerically via simulations of a polydisperse mixture of active quasi-hard spheres, thereby establishing that, at least for these model systems, the microscopic details of self-propulsion do not alter the active glassy behavior.

8.
Proc Natl Acad Sci U S A ; 116(50): 25013-25022, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31767770

RESUMEN

Fragility is an empirical property that describes how abruptly a glass-forming material solidifies upon supercooling. The degree of fragility carries important implications for the functionality and processability of a material, as well as for our fundamental understanding of the glass transition. However, the microstructural properties underlying fragility still remain poorly understood. Here, we explain the microstructure-fragility link in vitrimeric networks, a novel type of high-performance polymers with unique bond-swapping functionality and unusual glass-forming behavior. Our results are gained from coarse-grained computer simulations and first-principles mode-coupling theory (MCT) of star-polymer vitrimers. We first demonstrate that the vitrimer fragility can be tuned over an unprecedentedly broad range, from fragile to strong and even superstrong behavior, by decreasing the bulk density. Remarkably, this entire phenomenology can be reproduced by microscopic MCT, thus challenging the conventional belief that existing first-principles theories cannot account for nonfragile behaviors. Our MCT analysis allows us to rationally identify the microstructural origin of the fragile-to-superstrong crossover, which is rooted in the sensitivity of the static structure factor to temperature variations. On the molecular scale, this behavior stems from a change in dominant length scales, switching from repulsive excluded-volume interactions to intrachain attractions as the vitrimer density decreases. Finally, we develop a simplified schematic MCT model which corroborates our microscopically founded conclusions and which unites our findings with earlier MCT studies. Our work sheds additional light on the elusive structure-fragility link in glass-forming matter and provides a first-principles-based platform for designing amorphous materials with an on-demand dynamic response.

9.
Biophys J ; 120(8): 1483-1497, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33617837

RESUMEN

Most cells possess the capacity to locomote. Alone or collectively, this allows them to adapt, to rearrange, and to explore their surroundings. The biophysical characterization of such motile processes, in health and in disease, has so far focused mostly on two limiting cases: single-cell motility on the one hand and the dynamics of confluent tissues such as the epithelium on the other. The in-between regime of clusters, composed of relatively few cells moving as a coherent unit, has received less attention. Such small clusters are, however, deeply relevant in development but also in cancer metastasis. In this work, we use cellular Potts models and analytical active matter theory to understand how the motility of small cell clusters changes with N, the number of cells in the cluster. Modeling and theory reveal our two main findings: cluster persistence time increases with N, whereas the intrinsic diffusivity decreases with N. We discuss a number of settings in which the motile properties of more complex clusters can be analytically understood, revealing that the focusing effects of small-scale cooperation and cell-cell alignment can overcome the increased bulkiness and internal disorder of multicellular clusters to enhance overall migrational efficacy. We demonstrate this enhancement for small-cluster collective durotaxis, which is shown to proceed more effectively than for single cells. Our results may provide some novel, to our knowledge, insights into the connection between single-cell and large-scale collective motion and may point the way to the biophysical origins of the enhanced metastatic potential of small tumor cell clusters.


Asunto(s)
Neoplasias , Atención , Biofisica , Movimiento Celular , Humanos
10.
Phys Rev Lett ; 127(27): 278002, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35061437

RESUMEN

Dense active matter is gaining widespread interest due to its remarkable similarity with conventional glass-forming materials. However, active matter is inherently out of equilibrium and even simple models such as active Brownian particles (ABPs) and active Ornstein-Uhlenbeck particles (AOUPs) behave markedly differently from their passive counterparts. Controversially, this difference has been shown to manifest itself via either a speedup, slowdown, or nonmonotonic change of the glassy relaxation dynamics. Here we rationalize these seemingly contrasting views on the departure from equilibrium by identifying the ratio of the short-time length scale to the cage length, i.e., the length scale of local particle caging, as a vital and unifying control parameter for active glassy matter. In particular, we explore the glassy dynamics of both thermal and athermal ABPs and AOUPs upon increasing the persistence time. We find that for all studied systems there is an optimum of the dynamics; this optimum occurs when the cage length coincides with the corresponding short-time length scale of the system, which is either the persistence length for athermal systems or a combination of the persistence length and a diffusive length scale for thermal systems. This new insight, for which we also provide a simple physical argument, allows us to reconcile and explain the manifestly disparate departures from equilibrium reported in many previous studies of dense active materials.

11.
Langmuir ; 37(17): 5364-5375, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886318

RESUMEN

Soft particles such as microgels can undergo significant and anisotropic deformations when adsorbed to a liquid interface. This, in turn, leads to a complex phase behavior upon compression. To date, experimental efforts have predominantly provided phenomenological links between microgel structure and resulting interfacial behavior, while simulations have not been entirely successful in reproducing experiments or predicting the minimal requirements for the desired phase behavior. Here, we develop a multiscale framework to link the molecular particle architecture to the resulting interfacial morphology and, ultimately, to the collective interfacial phase behavior. To this end, we investigate interfacial morphologies of different poly(N-isopropylacrylamide) particle systems using phase-contrast atomic force microscopy and correlate the distinct interfacial morphology with their bulk molecular architecture. We subsequently introduce a new coarse-grained simulation method that uses augmented potentials to translate this interfacial morphology into the resulting phase behavior upon compression. The main novelty of this method is the possibility to efficiently encode multibody interactions, the effects of which are key to distinguishing between heterostructural (anisotropic collapse) and isostructural (isotropic collapse) phase transitions. Our approach allows us to qualitatively resolve existing discrepancies between experiments and simulations. Notably, we demonstrate the first in silico account of the two-dimensional isostructural transition, which is frequently found in experiments but elusive in simulations. In addition, we provide the first experimental demonstration of a heterostructural transition to a chain phase in a single-component system, which has been theoretically predicted decades ago. Overall, our multiscale framework provides a phenomenological bridge between physicochemical soft-particle characteristics at the molecular scale and nanoscale and the collective self-assembly phenomenology at the macroscale, serving as a stepping stone toward an ultimately more quantitative and predictive design approach.

12.
Soft Matter ; 17(33): 7645-7661, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34373889

RESUMEN

Sticky hard spheres, i.e., hard particles decorated with a short-ranged attractive interaction potential, constitute a relatively simple model with highly non-trivial glassy dynamics. The mode-coupling theory of the glass transition (MCT) offers a qualitative account of the complex reentrant dynamics of sticky hard spheres, but the predicted glass transition point is notoriously underestimated. Here we apply an improved first-principles-based theory, referred to as generalized mode-coupling theory (GMCT), to sticky hard spheres. This theoretical framework seeks to go beyond MCT by hierarchically expanding the dynamics in higher-order density correlation functions. We predict the phase diagrams from the first few levels of the GMCT hierarchy and the dynamics-related critical exponents, all of which are much closer to the empirical observations than MCT. Notably, the prominent reentrant glassy dynamics, the glass-glass transition, and the higher-order bifurcation singularity classes (A3 and A4) of sticky hard spheres are found to be preserved within GMCT at arbitrary order. Moreover, we demonstrate that when the hierarchical order of GMCT increases, the effect of the short-ranged attractive interactions becomes more evident in the dynamics. This implies that GMCT is more sensitive to subtle microstructural differences than MCT, and that the framework provides a promising first-principles approach to systematically go beyond the MCT regime.

13.
Soft Matter ; 17(17): 4504-4516, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33949612

RESUMEN

Microgels, consisting of a swollen polymer network, exhibit a more complex self-assembly behavior compared to incompressible colloidal particles, because of their ability to deform at a liquid interface or collapse upon compression. Here, we investigate the collective phase behavior of two-dimensional binary mixtures of microgels confined at the air/water interface. We use stimuli-responsive poly(N-isopropylacrylamide) microgels with different crosslinking densities, and therefore different morphologies at the interface. We find that the minority microgel population introduces lattice defects in the ordered phase of the majority population, which, in contrast to bulk studies, do not heal out by partial deswelling to accommodate in the lattice. We subsequently investigate the interfacial phase behavior of these binary interfacial assemblies under compression. The binary system exhibits three distinct isostructural solid-solid phase transitions, during which the coronae between two small particles collapse first, followed by the collapse between small-large and large-large microgel pairs. A similar hierarchy of phase transitions is found for mixtures of microgels and core-shell particles. Simulations based on augmented potentials qualitatively reproduce the experimentally observed phase transitions. We rationalize the presence of this hierarchy in phase transitions from differences in the interfacial morphology between the species: the larger coronae of softer (and therefore larger) microgels provide a higher resistance to phase transitions compared to the smaller coronae of the more crosslinked microgels and core-shell particles. The control of phase transitions via the molecular architecture further allows the formation of characteristic, flower-like defects by introducing particles with "weaker" coronae that are more prone to collapse with their neighboring particles. Our findings underline the dominating role of the corona for interfacial microgel assemblies, which acts as an energy barrier, shifting the collapse to higher surface pressures.

14.
Soft Matter ; 17(22): 5581-5589, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-33988219

RESUMEN

Thermo-responsive microgel particles can exhibit a drastic volume shrinkage upon increasing the solvent temperature. Recently we found that the spreading of poly(N-isopropylacrylamide) (PNiPAm) microgels at a liquid interface under the influence of surface tension hinders the temperature-induced volume phase transition. In addition, we observed a hysteresis behavior upon temperature cycling, i.e. a different evolution in microgel size and shape depending on whether the microgel was initially adsorbed to the interface in expanded or collapsed state. Here, we model the volume phase transition of such microgels at an air/water interface by monomer-resolved Brownian dynamics simulations and compare the observed behavior with experiments. We reproduce the experimentally observed hysteresis in the microgel dimensions upon temperature variation. Our simulations did not observe any hysteresis for microgels dispersed in the bulk liquid, suggesting that it results from the distinct interfacial morphology of the microgel adsorbed at the liquid interface. An initially collapsed microgel brought to the interface and subjected to subsequent swelling and collapsing (resp. cooling and heating) will end up in a larger size than it had in the original collapsed state. Further temperature cycling, however, only shows a much reduced hysteresis, in agreement with our experimental observations. We attribute the hysteretic behavior to a kinetically trapped initial collapsed configuration, which relaxes upon expanding in the swollen state. We find a similar behavior for linear PNiPAm chains adsorbed to an interface. Our combined experimental - simulation investigation provides new insights into the volume phase transition of PNiPAm materials adsorbed to liquid interfaces.

15.
Eur Phys J E Soft Matter ; 44(7): 91, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34231080

RESUMEN

The emergence of glassy dynamics and the glass transition in dense disordered systems is still not fully understood theoretically. Mode-coupling theory (MCT) has shown to be effective in describing some of the non-trivial features of glass formation, but it cannot explain the full glassy phenomenology due to the strong approximations on which it is based. Generalized mode-coupling theory (GMCT) is a hierarchical extension of the theory, which is able to outclass MCT by carefully describing the dynamics of higher-order correlations in its generalized framework. Unfortunately, the theory has so far only been developed for single-component systems and as a result works poorly for highly polydisperse materials. In this paper, we solve this problem by developing GMCT for multi-component systems. We use it to predict the glassy dynamics of the binary Kob-Andersen Lennard-Jones mixture, as well as its purely repulsive Weeks-Chandler-Andersen analogue. Our results show that each additional level of the GMCT hierarchy gradually improves the predictive power of GMCT beyond its previous limit. This implies that our theory is able to harvest more information from the static correlations, thus being able to better understand the role of attraction in supercooled liquids from a first-principles perspective.

16.
J Chem Phys ; 155(3): 034502, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34293894

RESUMEN

We develop a first-principles-based generalized mode-coupling theory (GMCT) for the tagged-particle motion of glassy systems. This theory establishes a hierarchy of coupled integro-differential equations for self-multi-point density correlation functions, which can formally be extended up to infinite order. We use our GMCT framework to calculate the self-nonergodicity parameters and the self-intermediate scattering function for the Percus-Yevick hard-sphere system based on the first few levels of the GMCT hierarchy. We also test the scaling laws in the α- and ß-relaxation regimes near the glass-transition singularity. Furthermore, we study the mean-square displacement and the Stokes-Einstein relation in the supercooled regime. We find that qualitatively our GMCT results share many similarities with the well-established predictions from standard mode-coupling theory, but the quantitative results change, and typically improve, by increasing the GMCT closure level. However, we also demonstrate on general theoretical grounds that the current GMCT framework is unable to account for violation of the Stokes-Einstein relation, underlining the need for further improvements in the first-principles description of glassy dynamics.

17.
J Chem Phys ; 153(21): 214507, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33291925

RESUMEN

Mode-coupling theory (MCT) constitutes one of the few first-principles-based approaches to describe the physics of the glass transition, but the theory's inherent approximations compromise its accuracy in the activated glassy regime. Here, we show that microscopic generalized mode-coupling theory (GMCT), a recently proposed hierarchical framework to systematically improve upon MCT, provides a promising pathway toward a more accurate first-principles description of glassy dynamics. We present a comprehensive numerical analysis for Percus-Yevick hard spheres by performing explicitly wavenumber- and time-dependent GMCT calculations up to sixth order. Specifically, we calculate the location of the critical point, the associated non-ergodicity parameters, and the time-dependent dynamics of the density correlators at both absolute and reduced packing fractions, and we test several universal scaling relations in the α- and ß-relaxation regimes. It is found that higher-order GMCT can successfully remedy some of MCT's pathologies, including an underestimation of the critical glass transition density and an overestimation of the hard-sphere fragility. Furthermore, we numerically demonstrate that the celebrated scaling laws of MCT are preserved in GMCT and that the predicted critical exponents manifestly improve as more levels are incorporated in the GMCT hierarchy. Although formally the GMCT equations should be solved up to infinite order to reach full convergence, our finite-order GMCT calculations unambiguously reveal a uniform convergence pattern for the dynamics. We thus argue that GMCT can provide a feasible and controlled means to bypass MCT's main uncontrolled approximation, offering hope for the future development of a quantitative first-principles theory of the glass transition.

18.
J Chem Phys ; 153(21): 214506, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33291926

RESUMEN

Generalized mode-coupling theory (GMCT) constitutes a systematically correctable, first-principles theory to study the dynamics of supercooled liquids and the glass transition. It is a hierarchical framework that, through the incorporation of increasingly many particle density correlations, can remedy some of the inherent limitations of the ideal mode-coupling theory (MCT). However, despite MCT's limitations, the ideal theory also enjoys several remarkable successes, notably including the analytical scaling laws for the α- and ß-relaxation dynamics. Here, we mathematically derive similar scaling laws for arbitrary-order multi-point density correlation functions obtained from GMCT under arbitrary mean-field closure levels. More specifically, we analytically derive the asymptotic and preasymptotic solutions for the long-time limits of multi-point density correlators, the critical dynamics with two power-law decays, the factorization scaling laws in the ß-relaxation regime, and the time-density superposition principle in the α-relaxation regime. The two characteristic power-law-divergent relaxation times for the two-step decay and the non-trivial relation between their exponents are also obtained. The validity ranges of the leading-order scaling laws are also provided by considering the leading preasymptotic corrections. Furthermore, we test these solutions for the Percus-Yevick hard-sphere system. We demonstrate that GMCT preserves all the celebrated scaling laws of MCT while quantitatively improving the exponents, rendering the theory a promising candidate for an ultimately quantitative first-principles theory of glassy dynamics.

19.
Langmuir ; 35(32): 10512-10521, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31304759

RESUMEN

The volume phase transition of microgels is one of the most paradigmatic examples of stimuli-responsiveness, enabling a collapse from a highly swollen microgel state into a densely coiled state by an external stimulus. Although well characterized in bulk, it remains unclear how the phase transition is affected by the presence of a confining interface. Here, we demonstrate that the temperature-induced volume phase transition of poly(N-isopropylacrylamide) microgels, conventionally considered an intrinsic molecular property of the polymer, is in fact largely suppressed when the microgel is adsorbed to an air/liquid interface. We further observe a hysteresis in the core morphology and interfacial pressure between heating and cooling cycles. Our results, supported by molecular dynamics simulations, reveal that the dangling polymer chains of microgel particles, spread at the interface under the influence of surface tension, do not undergo any volume phase transition. The balance in free energy responsible for the volume phase transition is fundamentally altered by interfacial confinement. These results imply that important technological properties of such systems, including the temperature-induced destabilization of emulsions, do not occur via a decrease in the interfacial coverage of the microgels.

20.
Phys Rev Lett ; 115(20): 205701, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26613452

RESUMEN

The transition from a liquid to a glass remains one of the most poorly understood phenomena in condensed matter physics, and still no fully microscopic theory exists that can describe the dynamics of supercooled liquids in a quantitative manner over all relevant time scales. Here, we present a theoretical framework that yields near-quantitative accuracy for the time-dependent correlation functions of a glass-forming system over a broad density range. Our approach requires only simple static structural information as input and is based entirely on first principles. Owing to its ab initio nature, the framework offers a unique platform to study the relation between structure and dynamics in glass-forming matter, and paves the way towards a systematically correctable and ultimately fully quantitative theory of microscopic glassy dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA