RESUMEN
Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.
Asunto(s)
Trastorno Depresivo Mayor , Metaloproteinasa 8 de la Matriz , Monocitos , Estrés Psicológico , Animales , Humanos , Ratones , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/enzimología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Espacio Extracelular/metabolismo , Metaloproteinasa 8 de la Matriz/sangre , Metaloproteinasa 8 de la Matriz/deficiencia , Metaloproteinasa 8 de la Matriz/genética , Metaloproteinasa 8 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Monocitos/química , Monocitos/inmunología , Monocitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Tejido Parenquimatoso/metabolismo , Análisis de Expresión Génica de una Sola Célula , Conducta Social , Aislamiento Social , Estrés Psicológico/sangre , Estrés Psicológico/genética , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismoRESUMEN
Mucus hypersecretion is an important pathological problem in respiratory diseases. Mucus accumulates in the airways of people with asthma, and it contributes to airflow limitation by forming plugs that occlude airways. Current treatments have minimal effects on mucus or its chief components, the polymeric mucin glycoproteins MUC5AC and MUC5B. This treatment gap reflects a poor molecular understanding of mucins that could be used to determine how they contribute to airway obstruction. Due to the prominence of glycosylation as a defining characteristic of mucins, we investigated characteristics of mucin glycans in asthma and in a mouse model of allergic asthma. Mucin fucosylation was observed in asthma, and in healthy mice it was induced as part of a mucous metaplastic response to allergic inflammation. In allergically inflamed mouse airways, mucin fucosylation was dependent on the enzyme fucosyltransferase 2 (Fut2). Fut2 gene deficient mice were protected from asthma-like airway hyperreactivity and mucus plugging. These findings provide mechanistic and translational links between observations in human asthma and a mouse model that may help improve therapeutic targeting of airway mucus.
RESUMEN
Efferocytosis is a process whereby apoptotic cells are cleared to maintain tissue homeostasis. In the lungs, efferocytosis has been implicated in several acute and chronic inflammatory diseases. A long-standing method to study efferocytosis in vivo is to instill apoptotic cells into the lungs to evaluate macrophage uptake. However, this approach provides nonphysiologic levels of cells to the airspaces, where there is preferential access to the alveolar macrophages. To circumvent this limitation, we developed a new method to study efferocytosis of damaged alveolar type 2 (AT2) epithelial cells in vivo. A reporter mouse that expresses TdTomato in AT2 epithelial cells was injured with influenza (strain PR8) to induce apoptosis of AT2 cells. We were able to identify macrophages that acquire red fluorescence after influenza injury, indicating efferocytosis of AT2 cells. Furthermore, evaluation of macrophage populations led to the surprising finding that lung interstitial macrophages were the primary efferocyte in vivo. In summary, we present a novel finding that the interstitial macrophage, not the alveolar macrophage, primarily mediates clearance of AT2 cells in the lungs after influenza infection. Our method of studying efferocytosis provides a more physiologic approach in evaluating the spatiotemporal dynamics of apoptotic cell clearance in vivo and opens new avenues to study the mechanisms by which efferocytosis regulates inflammation.
Asunto(s)
Eferocitosis , Gripe Humana , Proteína Fluorescente Roja , Animales , Ratones , Humanos , Macrófagos , EpitelioRESUMEN
Bronchoalveolar lavage (BAL) is used by researchers to study molecular interactions within healthy and diseased human lungs. However, the utility of BAL fluid measurements may be limited by difficulties accounting for dilution of the epithelial lining fluid (ELF) sampled and inconsistent collection techniques. The use of endogenous markers to estimate ELF dilution has been proposed as a potential method to normalize acellular molecule measurements in BAL fluid, but these markers are also imperfect and prone to inaccuracy. The focus of this report is to review factors that affect the interpretation of acellular molecule measurements in lung ELF and present original data comparing the performance of several BAL dilution markers during health and in a human endobronchial endotoxin challenge model of acute inflammation. Our findings suggest that incomplete ELF and lavage fluid mixing, flux of markers across the alveolar barrier, and lung inflammation are all possible factors that can affect marker performance. Accounting for these factors, we show that commonly used markers including urea, total protein, albumin, and immunoglobulin M are likely unreliable BAL dilution markers. In contrast, surfactant protein D, appears to be less affected by these factors and may be a more accurate and biologically plausible marker to improve the reproducibility of acellular BAL component measurements across individuals, during health and inflammatory states.
RESUMEN
Emphysema, the progressive destruction of gas exchange surfaces in the lungs, is a hallmark of chronic obstructive pulmonary disease (COPD) that is presently incurable. This therapeutic gap is largely due to a poor understanding of potential drivers of impaired tissue regeneration, such as abnormal lung epithelial progenitor cells, including alveolar type II (ATII) and airway club cells. We discovered an emphysema-specific sub-population of ATII cells located in enlarged distal alveolar sacs, termed asATII cells. Single cell RNA-seq and in situ localisation revealed that asATII cells co-express the alveolar marker surfactant protein C (SPC) and the club cell marker secretaglobin-3A2 (SCGB3A2). A similar ATII sub-population derived from club cells was also identified in mouse COPD models using lineage labeling. Human and mouse ATII sub-populations formed 80-90% fewer alveolar organoids than healthy controls, indicating reduced progenitor function. Targeting asATII cells or their progenitor club cells could reveal novel COPD treatment strategies.
RESUMEN
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.
Asunto(s)
Traumatismos por Explosión , Conmoción Encefálica , Lesiones del Sistema Vascular , Animales , Humanos , Células Endoteliales , Astrocitos , InflamaciónRESUMEN
Interstitial macrophages (IMs) reside in the lung tissue surrounding key structures including airways, vessels, and alveoli. Recent work has described IM heterogeneity during homeostasis, however, there are limited data on IMs during inflammation. We sought to characterize IM origin, subsets, and transcriptomic profiles during homeostasis and lipopolysaccharide (LPS) induced acute lung inflammation. During homeostasis, we used three complementary methods, spectral flow cytometry, single-cell RNA-sequencing, and gene regulatory network enrichment, to demonstrate that IMs can be divided into two core subsets distinguished by surface and transcriptional expression of folate receptor ß (Folr2/FRß). These subsets inhabited distinct niches within the lung interstitium. Within FRß+ IMs we identified a subpopulation marked by coexpression of LYVE1. During acute LPS-induced inflammation, lung IM numbers expand. Lineage tracing revealed IM expansion was due to recruitment of monocyte-derived IMs. At the peak of inflammation, recruited IMs were comprised two unique subsets defined by expression of genes associated with interferon signaling and glycolytic pathways. As recruited IMs matured, they adopted the overall transcriptional state of FRß- resident IMs but retained expression in several origin-specific genes, such as IL-1ß. FRß+ IMs were of near-pure resident origin. Taken together our data show that during LPS-induced inflammation, there are distinct populations of IMs that likely have unique functions. FRΒ+ IMs comprise a stable, resident population, whereas FRß- ΙΜs represent a mixed population of resident and recruited IMs.
Asunto(s)
Receptor 2 de Folato , Neumonía , Humanos , Monocitos/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/metabolismo , Inflamación/genética , Inflamación/metabolismo , Análisis de Secuencia de ARN/métodos , Receptor 2 de Folato/metabolismoRESUMEN
Mycobacterium abscessus, a species of nontuberculous mycobacteria (NTM), is an opportunistic pathogen that is readily cleared by healthy lungs but can cause pulmonary infections in people with chronic airway diseases. Although knowledge pertaining to molecular mechanisms of host defense against NTM is increasing, macrophage receptors that recognize M. abscessus remain poorly defined. Dectin-1, a C-type lectin receptor identified as a fungal receptor, has been shown to be a pathogen recognition receptor (PRR) for both M. tuberculosis and NTM. To better understand the role of Dectin-1 in host defense against M. abscessus, we tested whether blocking Dectin-1 impaired the uptake of M. abscessus by human macrophages, and we compared M. abscessus pulmonary infection in Dectin-1-deficient and wild-type mice. Blocking antibody for Dectin-1 did not reduce macrophage phagocytosis of M. abscessus, but did reduce the ingestion of the fungal antigen zymosan. Laminarin, a glucan that blocks Dectin-1 and other PRRs, caused decreased phagocytosis of both M. abscessus and zymosan. Dectin-1-/- mice exhibited no defects in the control of M. abscessus infection, and no differences were detected in immune cell populations between wild type and Dectin-1-/- mice. These data demonstrate that murine defense against M. abscessus pulmonary infection, as well as ingestion of M. abscessus by human macrophages, can occur independent of Dectin-1. Thus, additional PRR(s) recognized by laminarin participate in macrophage phagocytosis of M. abscessus.
Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Animales , Ratones , Zimosan , Macrófagos , Fagocitosis , Micobacterias no Tuberculosas , Infecciones por Mycobacterium no Tuberculosas/microbiologíaRESUMEN
The pathogenesis of chronic obstructive pulmonary disease (COPD), a prevalent disease primarily caused by cigarette smoke exposure, is incompletely elucidated. Studies in humans and mice have suggested that hypoxia-inducible factor-1α (HIF-1α) may play a role. Reduced lung levels of HIF-1α are associated with decreased vascular density, whereas increased leukocyte HIF-1α may be responsible for increased inflammation. To elucidate the specific role of leukocyte HIF-1α in COPD, we exposed transgenic mice with conditional deletion or overexpression of HIF-1α in leukocytes to cigarette smoke for 7 mo. Outcomes included pulmonary physiology, aerated lung volumes via microcomputed tomography, lung morphometry and histology, and cardiopulmonary hemodynamics. On aggregate, cigarette smoke increased the aerated lung volume, quasi-static lung compliance, inspiratory capacity of all strains while reducing the total alveolar septal volume. Independent of smoke exposure, mice with leukocyte-specific HIF-1α overexpression had increased quasi-static compliance, inspiratory capacity, and alveolar septal volume compared with mice with leukocyte-specific HIF-1α deletion. However, the overall development of cigarette smoke-induced lung disease did not vary relative to control mice for either of the conditional strains. This suggests that the development of murine cigarette smoke-induced airspace disease occurs independently of leukocyte HIF-1α signaling.
Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Modelos Animales de Enfermedad , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Leucocitos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/patología , Nicotiana/efectos adversos , Microtomografía por Rayos XRESUMEN
BACKGROUND: Allogeneic hematopoietic stem-cell transplantation for X-linked severe combined immunodeficiency (SCID-X1) often fails to reconstitute immunity associated with T cells, B cells, and natural killer (NK) cells when matched sibling donors are unavailable unless high-dose chemotherapy is given. In previous studies, autologous gene therapy with γ-retroviral vectors failed to reconstitute B-cell and NK-cell immunity and was complicated by vector-related leukemia. METHODS: We performed a dual-center, phase 1-2 safety and efficacy study of a lentiviral vector to transfer IL2RG complementary DNA to bone marrow stem cells after low-exposure, targeted busulfan conditioning in eight infants with newly diagnosed SCID-X1. RESULTS: Eight infants with SCID-X1 were followed for a median of 16.4 months. Bone marrow harvest, busulfan conditioning, and cell infusion had no unexpected side effects. In seven infants, the numbers of CD3+, CD4+, and naive CD4+ T cells and NK cells normalized by 3 to 4 months after infusion and were accompanied by vector marking in T cells, B cells, NK cells, myeloid cells, and bone marrow progenitors. The eighth infant had an insufficient T-cell count initially, but T cells developed in this infant after a boost of gene-corrected cells without busulfan conditioning. Previous infections cleared in all infants, and all continued to grow normally. IgM levels normalized in seven of the eight infants, of whom four discontinued intravenous immune globulin supplementation; three of these four infants had a response to vaccines. Vector insertion-site analysis was performed in seven infants and showed polyclonal patterns without clonal dominance in all seven. CONCLUSIONS: Lentiviral vector gene therapy combined with low-exposure, targeted busulfan conditioning in infants with newly diagnosed SCID-X1 had low-grade acute toxic effects and resulted in multilineage engraftment of transduced cells, reconstitution of functional T cells and B cells, and normalization of NK-cell counts during a median follow-up of 16 months. (Funded by the American Lebanese Syrian Associated Charities and others; LVXSCID-ND ClinicalTrials.gov number, NCT01512888.).
Asunto(s)
Busulfano/administración & dosificación , Terapia Genética , Vectores Genéticos , Subunidad gamma Común de Receptores de Interleucina/genética , Lentivirus , Acondicionamiento Pretrasplante , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/terapia , Antígenos de Diferenciación de Linfocitos T/sangre , Linfocitos B/fisiología , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunoglobulina M/sangre , Lactante , Células Asesinas Naturales , Recuento de Linfocitos , Masculino , Linfocitos T , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/inmunologíaRESUMEN
Rationale: Macrophages are the most abundant immune cell in the alveoli and small airways and are traditionally viewed as a homogeneous population during health. Whether distinct subsets of airspace macrophages are present in healthy humans is unknown. Single-cell RNA sequencing allows for examination of transcriptional heterogeneity between cells and between individuals. Understanding the conserved repertoire of airspace macrophages during health is essential to understanding cellular programing during disease.Objectives: We sought to determine the transcriptional heterogeneity of human cells obtained from BAL of healthy adults.Methods: Ten subjects underwent bronchoscopy with BAL. Cells from lavage were subjected to single-cell RNA sequencing. Unique cell populations and putative functions were identified. Transcriptional profiles were compared across individuals.Measurements and Main Results: We identify two novel subgroups of resident airspace macrophages-defined by proinflammatory and metallothionein gene expression profiles. We define subsets of monocyte-like cells and compare them with peripheral blood mononuclear cells. Finally, we compare global macrophage and monocyte programing between males and females.Conclusions: Healthy human airspaces contain multiple populations of myeloid cells that are highly conserved between individuals and between sexes. Resident macrophages make up the largest population and include novel subsets defined by inflammatory and metal-binding profiles. Monocyte-like cells within the airspaces are transcriptionally aligned with circulating blood cells and include a rare population defined by expression of cell-matrix interaction genes. This study is the first to delineate the conserved heterogeneity of airspace immune cells during health and identifies two previously unrecognized macrophage subsets.
Asunto(s)
Líquido del Lavado Bronquioalveolar/inmunología , Perfilación de la Expresión Génica , Leucocitos Mononucleares/inmunología , Macrófagos Alveolares/inmunología , Monocitos/inmunología , Alveolos Pulmonares/inmunología , Análisis de Secuencia de ARN , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Factores SexualesRESUMEN
As the average age of the population continues to rise, the number of individuals affected with age-related cognitive decline and Alzheimer's disease (AD) has increased and is projected to cost more than $290 billion in the United States in 2019. Despite significant investment in research over the last decades, there is no effective treatment to prevent or delay AD progression. There is a translational gap in AD research, with promising drugs based on work in rodent models failing in clinical trials. Aging is the leading risk factor for developing AD and understanding neurobiological changes that affect synaptic integrity with aging will help clarify why the aged brain is vulnerable to AD. We describe here the development of a rhesus monkey model of AD using soluble oligomers of the amyloid beta (Aß) peptide (AßOs). AßOs infused into the monkey brain target a specific population of spines in the prefrontal cortex, induce neuroinflammation, and increase AD biomarkers in the cerebrospinal fluid to similar levels observed in patients with AD. Importantly, AßOs lead to similar dendritic spine loss to that observed in normal aging in monkeys, but so far without detection of amyloid plaques or tau pathology. Understanding the basis of synaptic impairment is the most effective route to early intervention and prevention or postponement of age-related cognitive decline and transition to AD. These initial findings support the use of monkeys as a platform to understand age-related vulnerabilities of the primate brain and may help develop effective disease-modifying therapies for treatment of AD and related dementias.
RESUMEN
Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response. Production of these negatively acting alternatively spliced isoforms is induced by stimulation with the TLR4 agonist lipopolysaccharide (LPS); thus, this alternative pre-mRNA splicing represents a negative feedback loop that terminates TLR signaling and prevents chronic inflammation. In the current study, we investigated the mechanisms regulating the LPS-induced alternative pre-mRNA splicing of the MyD88 transcript in murine macrophages. We found that 1) the induction of the alternatively spliced MyD88 form is due to alternative pre-mRNA splicing and not caused by another RNA regulatory mechanism, 2) MyD88 splicing is regulated by both the MyD88- and TRIF-dependent arms of the TLR signaling pathway, 3) MyD88 splicing is regulated by the NF-κB transcription factor, and 4) NF-κB likely regulates MyD88 alternative pre-mRNA splicing per se rather than regulating splicing indirectly by altering MyD88 transcription. We conclude that alternative splicing of MyD88 may provide a sensitive mechanism that ensures robust termination of inflammation for tissue repair and restoration of normal tissue homeostasis once an infection is controlled.
Asunto(s)
Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Precursores del ARN/genética , Empalme del ARN/efectos de los fármacos , Empalme Alternativo/efectos de los fármacos , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/citología , Ratones , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Transcripción Genética/efectos de los fármacosRESUMEN
Rationale: Interstitial macrophages (IMs) and airspace macrophages (AMs) play critical roles in lung homeostasis and host defense, and are central to the pathogenesis of a number of lung diseases. However, the absolute numbers of macrophages and the precise anatomic locations they occupy in the healthy human lung have not been quantified.Objectives: To determine the precise number and anatomic location of human pulmonary macrophages in nondiseased lungs and to quantify how this is altered in chronic cigarette smokers.Methods: Whole right upper lobes from 12 human donors without pulmonary disease (6 smokers and 6 nonsmokers) were evaluated using design-based stereology. CD206 (cluster of differentiation 206)-positive/CD43+ AMs and CD206+/CD43- IMs were counted in five distinct anatomical locations using the optical disector probe.Measurements and Main Results: An average of 2.1 × 109 IMs and 1.4 × 109 AMs were estimated per right upper lobe. Of the AMs, 95% were contained in diffusing airspaces and 5% in airways. Of the IMs, 78% were located within the alveolar septa, 14% around small vessels, and 7% around the airways. The local density of IMs was greater in the alveolar septa than in the connective tissue surrounding the airways or vessels. The total number and density of IMs was 36% to 56% greater in the lungs of cigarette smokers versus nonsmokers.Conclusions: The precise locations occupied by pulmonary macrophages were defined in nondiseased human lungs from smokers and nonsmokers. IM density was greatest in the alveolar septa. Lungs from chronic smokers had increased IM numbers and overall density, supporting a role for IMs in smoking-related disease.
Asunto(s)
Fumar Cigarrillos/patología , Pulmón/patología , Macrófagos Alveolares/patología , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Recuento de Células , Femenino , Humanos , Inmunohistoquímica , Lectinas Tipo C/metabolismo , Leucosialina/metabolismo , Pulmón/citología , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Persona de Mediana Edad , Dispositivos Ópticos , Receptores de Superficie Celular/metabolismo , Donantes de TejidosRESUMEN
Age-related cognitive decline has been extensively studied in humans, but the majority of research designs are cross-sectional and compare across younger and older adults. Longitudinal studies are necessary to capture variability in cognitive aging trajectories but are difficult to carry out in humans and long-lived nonhuman primates. Marmosets are an ideal primate model for neurocognitive aging as their naturally short lifespan facilitates longitudinal designs. In a longitudinal study of marmosets tested on reversal learning starting in middle-age, we found that, on average, the group of marmosets declined in cognitive performance around 8 years of age. However, we found highly variable patterns of cognitive aging trajectories across individuals. Preliminary analyses of brain tissues from this cohort also show highly variable degrees of neuropathology. Future work will tie together behavioral trajectories with brain pathology and provide a window into the factors that predict age-related cognitive decline.
Asunto(s)
Envejecimiento , Callithrix , Animales , Estudios Transversales , Longevidad , Estudios LongitudinalesRESUMEN
BACKGROUND: Maintenance of the intricate interdigitating morphology of podocytes is crucial for glomerular filtration. One of the key aspects of specialized podocyte morphology is the segregation and organization of distinct cytoskeletal filaments into different subcellular components, for which the exact mechanisms remain poorly understood. METHODS: Cells from rats, mice, and humans were used to describe the cytoskeletal configuration underlying podocyte structure. Screening the time-dependent proteomic changes in the rat puromycin aminonucleoside-induced nephropathy model correlated the actin-binding protein LIM-nebulette strongly with glomerular function. Single-cell RNA sequencing and immunogold labeling were used to determine Nebl expression specificity in podocytes. Automated high-content imaging, super-resolution microscopy, atomic force microscopy (AFM), live-cell imaging of calcium, and measurement of motility and adhesion dynamics characterized the physiologic role of LIM-nebulette in podocytes. RESULTS: Nebl knockout mice have increased susceptibility to adriamycin-induced nephropathy and display morphologic, cytoskeletal, and focal adhesion abnormalities with altered calcium dynamics, motility, and Rho GTPase activity. LIM-nebulette expression is decreased in diabetic nephropathy and FSGS patients at both the transcript and protein level. In mice, rats, and humans, LIM-nebulette expression is localized to primary, secondary, and tertiary processes of podocytes, where it colocalizes with focal adhesions as well as with vimentin fibers. LIM-nebulette shRNA knockdown in immortalized human podocytes leads to dysregulation of vimentin filament organization and reduced cellular elasticity as measured by AFM indentation. CONCLUSIONS: LIM-nebulette is a multifunctional cytoskeletal protein that is critical in the maintenance of podocyte structural integrity through active reorganization of focal adhesions, the actin cytoskeleton, and intermediate filaments.
Asunto(s)
Actinas/fisiología , Filamentos Intermedios/fisiología , Enfermedades Renales/patología , Glomérulos Renales/patología , Podocitos/patología , Vimentina/fisiología , Animales , Técnicas de Cultivo de Célula , Proteínas del Citoesqueleto/fisiología , Humanos , Enfermedades Renales/etiología , Proteínas con Dominio LIM/fisiología , Ratones , RatasRESUMEN
INTRODUCTION: Alzheimer's disease (AD) is a devastating condition with no effective treatments, with promising findings in rodents failing to translate into successful therapies for patients. METHODS: Targeting the vulnerable entorhinal cortex (ERC), rhesus monkeys received two injections of an adeno-associated virus expressing a double tau mutation (AAV-P301L/S320F) in the left hemisphere, and control AAV-green fluorescent protein in the right ERC. Noninjected aged-matched monkeys served as additional controls. RESULTS: Within 3 months we observed evidence of misfolded tau propagation, similar to what is hypothesized to occur in humans. Viral delivery of human 4R-tau also coaptates monkey 3R-tau via permissive templating. Tau spreading is accompanied by robust neuroinflammatory response driven by TREM2+ microglia, with biomarkers of inflammation and neuronal loss in the cerebrospinal fluid and plasma. DISCUSSION: These results highlight the initial stages of tau seeding and propagation in a primate model, a more powerful translational approach for the development of new therapies for AD.
Asunto(s)
Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Macaca mulatta/metabolismo , Proteínas tau/líquido cefalorraquídeo , Anciano , Péptidos beta-Amiloides/líquido cefalorraquídeo , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Corteza Entorrinal/patología , Femenino , Humanos , Microglía/metabolismo , Mutación/genéticaRESUMEN
A human single nucleotide polymorphism (SNP) in the matrix-binding domain of extracellular superoxide dismutase (EC-SOD), with arginine to glycine substitution at position 213 (R213G), redistributes EC-SOD from the matrix into extracellular fluids. We reported that, following bleomycin (bleo), knockin mice harboring the human R213G SNP (R213G mice) exhibit enhanced resolution of inflammation and protection against fibrosis, compared with wild-type (WT) littermates. In this study, we tested the hypothesis that the EC-SOD R213G SNP promotes resolution via accelerated apoptosis of recruited alveolar macrophage (AM). RNA sequencing and Ingenuity Pathway Analysis 7 d postbleo in recruited AM implicated increased apoptosis and blunted inflammatory responses in the R213G strain exhibiting accelerated resolution. We validated that the percentage of apoptosis was significantly elevated in R213G recruited AM vs. WT at 3 and 7 d postbleo in vivo. Recruited AM numbers were also significantly decreased in R213G mice vs. WT at 3 and 7 d postbleo. ChaC glutathione-specific γ-glutamylcyclotransferase 1 (Chac1), a proapoptotic γ-glutamyl cyclotransferase that depletes glutathione, was increased in the R213G recruited AM. Overexpression of Chac1 in vitro induced apoptosis of macrophages and was blocked by administration of cell-permeable glutathione. In summary, we provide new evidence that redistributed EC-SOD accelerates the resolution of inflammation through redox-regulated mechanisms that increase recruited AM apoptosis.-Allawzi, A., McDermott, I., Delaney, C., Nguyen, K., Banimostafa, L., Trumpie, A., Hernandez-Lagunas, L., Riemondy, K., Gillen, A., Hesselberth, J., El Kasmi, K., Sucharov, C. C., Janssen, W. J., Stenmark, K., Bowler, R., Nozik-Grayck, E. Redistribution of EC-SOD resolves bleomycin-induced inflammation via increased apoptosis of recruited alveolar macrophages.
Asunto(s)
Apoptosis , Bleomicina/toxicidad , Líquido Extracelular/enzimología , Matriz Extracelular/enzimología , Inflamación/prevención & control , Macrófagos Alveolares/patología , Superóxido Dismutasa/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Células Cultivadas , Femenino , Fibrosis/inducido químicamente , Fibrosis/metabolismo , Fibrosis/prevención & control , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple , Superóxido Dismutasa/genéticaRESUMEN
BACKGROUND: In the setting of diabetes mellitus, mitochondrial dysfunction and oxidative stress are important pathogenic mechanisms causing end organ damage, including diabetic kidney disease (DKD), but mechanistic understanding at a cellular level remains obscure. In mouse models of DKD, glomerular endothelial cell (GEC) dysfunction precedes albuminuria and contributes to neighboring podocyte dysfunction, implicating GECs in breakdown of the glomerular filtration barrier. In the following studies we wished to explore the cellular mechanisms by which GECs become dysfunctional in the diabetic milieu, and the impact to neighboring podocytes. METHODS: Mouse GECs were exposed to high glucose media (HG) or 2.5% v/v serum from diabetic mice or serum from non-diabetic controls, and evaluated for mitochondrial function (oxygen consumption), structure (electron microscopy), morphology (mitotracker), mitochondrial superoxide (mitoSOX), as well as accumulation of oxidized products (DNA lesion frequency (8-oxoG, endo-G), double strand breaks (γ-H2AX), endothelial function (NOS activity), autophagy (LC3) and apoptotic cell death (Annexin/PI; caspase 3). Supernatant transfer experiments from GECs to podocytes were performed to establish the effects on podocyte survival and transwell experiments were performed to determine the effects in co-culture. RESULTS: Diabetic serum specifically causes mitochondrial dysfunction and mitochondrial superoxide release in GECs. There is a rapid oxidation of mitochondrial DNA and loss of mitochondrial biogenesis without cell death. Many of these effects are blocked by mitoTEMPO a selective mitochondrial anti-oxidant. Secreted factors from dysfunctional GECs were sufficient to cause podocyte apoptosis in supernatant transfer experiments, or in co-culture but this did not occur when GECs had been previously treated with mitoTEMPO. CONCLUSION: Dissecting the impact of the diabetic environment on individual cell-types from the kidney glomerulus indicates that GECs become dysfunctional and pathological to neighboring podocytes by increased levels of mitochondrial superoxide in GEC. These studies indicate that GEC-signaling to podocytes contributes to the loss of the glomerular filtration barrier in DKD. Video abstract.