Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38735623

RESUMEN

Aquatic environments are subject to ultraviolet B (UVB) radiation incidence, and its effects on organisms are dose-dependent. Besides DNA, mitochondria are an important target of this radiation that causes structural damage and impairs its functional dynamics. Here, we hypothesize that mitophagy acts as an organelle quality control mechanism to mitigate UVB impacts in embryonic cells. Then, freshwater prawn Macrobrachium olfersii embryos was used as a model to investigate the effects of UVB on genes (Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3) and proteins (TOM20, PINK1, p62 and LC3B) involved in mitophagy modulation. The choice of genes and proteins was based on the identification of mitochondrial membrane (Tomm20, Opa1 and TOM20), mediation of mitophagy (Pink1, Prkn and PINK1), and recognition of mitochondria by the autophagosome membrane (Sqstm1, Map1lc3, p62 and LC3B). First, the phylogeny of all genes presented bootstrap values >80 and conserved domains among crustacean species. Gene expression was inherently modulated during development, with transcripts (Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3) overexpressed in the initial and final stages of development. Moreover, UVB radiation induced upregulation of Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3 genes at 6 h after exposure. Interestingly, after 12 h, the protein content of PINK1, p62, and LC3B increased, while TOM20 was not responsive. Despite UVB radiation's harmful effects on embryonic cells, the chronology of gene expression and protein content indicates rapid activation of mitophagy, serving as an organelle quality control mechanism, given the analyzed cells' integrity.


Asunto(s)
Mitofagia , Palaemonidae , Rayos Ultravioleta , Animales , Rayos Ultravioleta/efectos adversos , Mitofagia/efectos de la radiación , Palaemonidae/efectos de la radiación , Palaemonidae/embriología , Palaemonidae/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Embrión no Mamífero/efectos de la radiación , Embrión no Mamífero/metabolismo , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Filogenia , Orgánulos/metabolismo , Orgánulos/efectos de la radiación
2.
J Exp Zool B Mol Dev Evol ; 338(5): 292-300, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35037742

RESUMEN

Hox genes encode transcription factors that specify the body segment identity during development, including crustaceans, such as amphipods and decapods, that possess a remarkable diversity of segments and specialized appendages. In amphipods, alterations of specialized appendages have been obtained using knockout experiment of Hox genes, which suggests that these genes are involved in the evolution of morphology within crustaceans. However, studies of Hox genes in crustaceans have been limited to a few species. Here, we identified the homeodomain of nine Hox genes: labial (lab), proboscipedia (pb), Deformed (Dfd), Sex combs reduced (Scr), fushi tarazu (ftz), Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abdA), and Abdominal-B (AbdB), and evaluated their expression by RT-qPCR and RT-PCR in the ovary, during embryonic development, and at the first larval stage (Zoea I) of the decapod Macrobrachium olfersii. The transcript levels of lab, Dfd, and ftz decreased and transcripts of pb, Scr, Antp, Ubx, abdA, and AbdB increased during embryonic development. Hox genes were expressed in mature ovaries and Zoea I larval stages, except Scr and ftz, respectively. In addition, isoforms of Dfd, Scr, Ubx, and abdA, which have been scarcely reported in crustaceans, were described. New partial sequences of 87 Hox genes from other crustaceans were identified from the GenBank database. Our results are interesting for future studies to determine the specific function of Hox genes and their isoforms in the freshwater prawn M. olfersii and to contribute to the understanding of the diversity and evolution of body plans and appendages in Crustaceans.


Asunto(s)
Proteínas de Drosophila , Palaemonidae , Animales , Proteínas de Drosophila/genética , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo
3.
Dev Genes Evol ; 226(5): 325-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27278761

RESUMEN

The crustaceans are one of the largest, most diverse, and most successful groups of invertebrates. The diversity among the crustaceans is also reflected in embryonic development models. However, the molecular genetics that regulates embryonic development is not known in those crustaceans that have a short germ-band development with superficial cleavage, such as Macrobrachium olfersi. This species is a freshwater decapod and has great potential to become a model for developmental biology, as well as for evolutionary and environmental studies. To obtain sequence data of M. olfersi from an embryonic developmental perspective, we performed de novo assembly and annotation of the embryonic transcriptome. Using a pooling strategy of total RNA, paired-end Illumina sequencing, and assembly with multiple k-mers, a total of 25,636,097 pair reads were generated. In total, 99,751 unigenes were identified, and 20,893 of these returned a Blastx hit. KEGG pathway analysis mapped a total of 6866 unigenes related to 129 metabolic pathways. In general, 21,845 unigenes were assigned to gene ontology (GO) categories: molecular function (19,604), cellular components (10,254), and biological processes (13,841). Of these, 2142 unigenes were assigned to the developmental process category. More specifically, a total of 35 homologs of embryonic development toolkit genes were identified, which included maternal effect (one gene), gap (six), pair-rule (six), segment polarity (seven), Hox (four), Wnt (eight), and dorsoventral patterning genes (three). In addition, genes of developmental pathways were found, including TGF-ß, Wnt, Notch, MAPK, Hedgehog, Jak-STAT, VEGF, and ecdysteroid-inducible nuclear receptors. RT-PCR analysis of eight genes related to embryonic development from gastrulation to late morphogenesis/organogenesis confirmed the applicability of the transcriptome analysis.


Asunto(s)
Decápodos/genética , Decápodos/metabolismo , Animales , Decápodos/clasificación , Decápodos/crecimiento & desarrollo , Embrión no Mamífero/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Repeticiones de Microsatélite , Modelos Animales , Transducción de Señal
4.
Fish Shellfish Immunol ; 58: 103-107, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27637731

RESUMEN

We have performed here a gene expression analysis to determine the developmental stage at the main genes involved in crustacean immune response begin to be expressed and their changes in mRNA abundance during shrimp development. By using a quantitative PCR-based approach, we have measured the mRNA abundance of 24 immune-related genes from different functional categories in twelve developmental stages ranging from fertilized eggs to larval and postlarval stages and also in juveniles. We showed for the first time that the main genes from the RNAi-based post-transcriptional pathway involved in shrimp antiviral immunity are transcribed in all developmental stages, but exhibit a diverse pattern of gene expression during shrimp ontogenesis. On the other hand, hemocyte-expressed genes mainly involved in antimicrobial defenses appeared to be transcribed in larval stages, indicating that hematopoiesis initiates early in development. Moreover, transcript levels of some genes were early detected in fertilized eggs at 0-4 h post-spawning, suggesting a maternal contribution of immune-related transcripts to shrimp progeny. Altogether, our results provide important clues regarding the ontogenesis of hemocytes as well the establishment of antiviral and antimicrobial defenses in shrimp.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Artrópodos/genética , Regulación del Desarrollo de la Expresión Génica , Penaeidae/genética , Penaeidae/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Artrópodos/metabolismo , Perfilación de la Expresión Génica , Sistema Inmunológico , Penaeidae/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Toxicon ; 215: 1-5, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35660625

RESUMEN

Loxoscelism is a serious public health problem in Peru, with approximately 2500 accidents reported per year. To envision alternatives to cope with this health problem, the neutralizing humoral immune response against the lethal effects of Peruvian spider Loxosceles laeta venom was evaluated in a mouse model by immunization with a non-toxic multiepitopic protein (rMEPLox). This immunogen contains epitopes from an astacin-like metalloprotease, a hyaluronidase and a sphingomyelinase-D from Loxosceles intermedia and from SMase-I from L. laeta venoms. In vivo protection assays showed that five out of six mice immunized with rMEPLox (after six injections) resisted to 1.4 LD50 of L. laeta venom, whereas only two animals from a control group survived. The present results indicates that this multiepitopic protein can be a promising candidate for anti-loxoscelic antivenom production and experimental vaccination approaches.


Asunto(s)
Epítopos/inmunología , Picaduras de Arañas , Venenos de Araña , Arañas , Animales , Inmunización , Ratones , Perú , Hidrolasas Diéster Fosfóricas/metabolismo , Arañas/metabolismo , Vacunación
6.
Neurotox Res ; 40(1): 127-139, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35043379

RESUMEN

Methylmercury (MeHg) is a ubiquitous environmental neurotoxicant whose mechanisms of action involve oxidation of endogenous nucleophilic groups (mainly thiols and selenols), depletion of antioxidant defenses, and disruption of neurotransmitter homeostasis. Diphenyl diselenide-(PhSe)2-a model diaryl diselenide, has been reported to display significant protective effects against MeHg-induced neurotoxicity under both in vitro and in vivo experimental conditions. In this study, we compared the protective effects of (PhSe)2 with those of RC513 (4,4'-diselanediylbis(2,6-di-tert-butylphenol), a novel diselenide-probucol-analog) against MeHg-induced toxicity in the neuronal (hippocampal) cell line HT22. Although both (PhSe)2 and RC513 significantly mitigated MeHg- and tert-butylhydroperoxide (t-BuOOH)-cytotoxicity, the probucol analog exhibited superior protective effects, which were observed earlier and at lower concentrations compared to (PhSe)2. RC513 treatment (at either 0.5 µM or 2 µM) significantly increased glutathione peroxidase (GPx) activity, which has been reported to counteract MeHg-toxicity. (PhSe)2 was also able to increase GPx activity, but only at 2 µM. Although both compounds increased the Gpx1 transcripts at 6 h after treatments, only RC513 was able to increase mRNA levels of Prx2, Prx3, Prx5, and Txn2, which are also involved in peroxide detoxification. RC513 (at 2 µM) significantly increased GPx-1 protein expression in HT22 cells, although (PhSe)2 displayed a minor (nonsignificant) effect in this parameter. In agreement, RC513 induced a faster and superior capability to cope with exogenously-added peroxide (t-BuOOH). In summary, when compared to the prototypical organic diaryl diselenide [(PhSe)2], RC513 displayed superior protective properties against MeHg-toxicity in vitro; this was paralleled by a more pronounced upregulation of defenses related to detoxification of peroxides, which are well-known MeHg-derived intermediate oxidant species.


Asunto(s)
Compuestos de Metilmercurio , Compuestos de Organoselenio , Derivados del Benceno/farmacología , Compuestos de Metilmercurio/toxicidad , Compuestos de Organoselenio/farmacología , Peróxidos , Probucol/farmacología
7.
Aquat Toxicol ; 222: 105468, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32199137

RESUMEN

The extracellular matrix (ECM) is a non-cellular and three-dimensional structure, constituted by a macromolecular dynamic network that involves the cells in all animal tissues, including embryonic ones. Several studies with vertebrates and cell cultures have reported deleterious effects of ultraviolet-B (UVB) radiation on the components associated with the ECM. However, studies focusing on the UVB radiation effects on ECM components of crustaceans during embryonic development are very scarce. Thus, the aim of this study was to identify the coding sequences of components associated with the ECM and to evaluate the effect of UVB radiation on embryos of the ecologically-important decapod Macrobrachium olfersii. To evaluate the modulation of these ECM components during embryonic development, the transcript levels of Col4α1, Itgß, Lamα, Mmp1 and Timp in M. olfersii embryos were analyzed at early developmental stages (E1, E3 and E4), intermediate developmental stage (E7) and late developmental stages (E10 and E14). In addition, embryos at E7, which correspond to a landmark of crustacean development, were analyzed after 12 h of UVB exposure to verify UVB effects on the ECM components. The ECM component sequences were similar to other decapods, suggesting conservation of these genes among crustaceans. The results showed modulations of the ECM components of M. olfersii embryos that reflect the need for each component in the cellular mechanisms, necessary for normal embryonic development. After UVB exposure, embryos showed opacity of embryonic tissues and it was found the overexpression of Col4α1, Itgß, Mmp1 and Timp transcript levels (1.82-, 1.52-, 2.34- and 6.27-fold, respectively). These impairments can compromise important events for normal embryonic development, such as growth of optic lobes, caudal papilla, ramification of appendages and differentiation of organic systems. The results presented here, together with the effects on morphology, cell proliferation, differentiation, and apoptosis demonstrated previously, strengthen the knowledge of the complex impacts of UVB radiation on freshwater embryos. Nevertheless, our results encourage further investigations focusing on the assessment of UVB effects on different organisms in order to better understand the myriad of UVB effects on ECM components.


Asunto(s)
Embrión no Mamífero/efectos de la radiación , Desarrollo Embrionario/efectos de la radiación , Matriz Extracelular/efectos de la radiación , Palaemonidae/efectos de la radiación , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta , Animales , Apoptosis/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Desarrollo Embrionario/genética , Matriz Extracelular/genética , Agua Dulce/química , Palaemonidae/genética , Palaemonidae/crecimiento & desarrollo
8.
Comput Biol Chem ; 78: 205-216, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30576966

RESUMEN

In embryonic development, microRNAs (miRNAs) regulate the complex gene expression associated with the complexity of embryogenesis. Today, few studies have been conducted on the identification of miRNAs and components of miRNA biogenesis on embryonic development in crustaceans, especially in prawns. In this context, the aim of this study was to identify in silico components of miRNA biogenesis, and miRNAs and potential target genes during embryonic development in the prawn Macrobrachium olfersii through small RNAs and transcriptome analyses. Using the miRDeep2 program, we identified 17 miRNA precursors in M. olfersii, which seven (miR-9, miR-10, miR-92, miR-125, miR-305, miR-1175, and miR-2788) were reported in the miRBase database, indicating high evolutionary conservation of these sequences among animals. The other 10 miRNAs of M. olfersii were novel miRNAs and only similar to Macrobrachium niponnense miRNAs, indicating genus-specific miRNAs. In addition, eight key components of miRNA biogenesis (DROSHA, PASHA/DGCR8, XPO5, RAN, DICER, TRBP2, AGO, and PIWI) were identified in M. olfersii embryos unigenes. In the annotation of miRNA targets, 516 genes were similar to known sequences in the GenBank database. Regarding the conserved miRNAs, we verified that they were differentially expressed during embryonic development in M. olfersii. In conclusion, this is the first study that identifies conserved and novel miRNAs in the prawn M. olfersii with some miRNA target genes involved in embryonic development. Our results will allow further studies on the function of these miRNAs and miRNA biogenesis components during embryonic development in M. olfersii and other prawns of commercial interest.


Asunto(s)
MicroARNs/análisis , Palaemonidae/química , Animales , Perfilación de la Expresión Génica , MicroARNs/genética , Palaemonidae/embriología , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Chemosphere ; 209: 353-362, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29935464

RESUMEN

Glyphosate (N-phosphonomethyl-glycine) (GLY) is the active ingredient of the most used herbicides in the world. GLY is applied in formulated products known as glyphosate-based herbicides (GBH), which could induce effects that are not predicted by toxicity assays with pure GLY. This herbicide is classified as organophosphorus compound, which is known to induce neurotoxic effects. Although this compound is classified as non-neurotoxic by regulatory agencies, acute exposure to GBH causes neurological symptoms in humans. However, there is no consensus in relation to neurotoxic effects of GBH. Thus, the aim of this study was to investigate the neurotoxic effects of the GBH in the zebrafish Danio rerio, focusing on acute toxicity, the activity and transcript levels of mitochondrial respiratory chain complexes, mitochondrial membrane potential, reactive species (RS) formation, and behavioral repertoire. Adult zebrafish were exposed in vivo to three concentrations of GBH Scout®, which contained GLY in formulation (fGLY) (0.065, 1.0 and 10.0 mg L-1 fGLY) for 7 d, and an in vitro assay was performed using also pure GLY. Our results show that GBH induced in zebrafish brain a decrease in cell viability, inhibited mitochondrial complex enzymatic activity, modulated gene expression related to mitochondrial complexes, induced an increase in RS production, promoted hyperpolarization of mitochondrial membrane, and induced behavioral impairments. Together, our data contributes to the knowledge of the neurotoxic effects of GBH. Mitochondrial dysfunction has been recognized as a relevant cellular response that should not be disregarded. Moreover, this study pointed to the mitochondria as an important target of GBH.


Asunto(s)
Transporte de Electrón/fisiología , Glicina/análogos & derivados , Mitocondrias/metabolismo , Animales , Glicina/química , Pez Cebra , Glifosato
10.
Aquat Toxicol ; 191: 25-33, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28780296

RESUMEN

Our previous studies showed that embryos of the freshwater prawn Macrobrachium olfersii exposed to ultraviolet B (UVB) radiation exhibited DNA damage, excessive ROS production, mitochondrial dysfunction and increased hsp70 expression, which are able, independently or together, to induce apoptosis. Thus, we attempted to elucidate some key apoptosis-related genes (ARG) and apoptosis-related proteins (ARP) and their expression during different stages of embryonic development, as well as to characterize the chronology of ARG expression and ARP contents after UVB radiation insult. We demonstrate that p53, Bax and Caspase3 genes are active in the embryonic cells at early embryonic developmental stages, and that the Bcl2 gene is active from the mid-embryonic stage. After UVB radiation exposure, we found an increase in ARP such as p53 and Bak after 3h of exposure. Moreover, an increase in ARG transcript levels for p53, Bax, Bcl2 and Caspase3 was observed at 6h after UVB exposure. Then, after 12h of UVB radiation exposure, an increase in Caspase3 gene expression and protein was observed, concomitantly with an increased number of apoptotic cells. Our data reveal that ARG and ARP are developmentally regulated in embryonic cells of M. olfersii and that UVB radiation causes apoptosis after 12h of exposure. Overall, we demonstrate that embryonic cells of M. olfersii are able to active the cell machinery against environmental changes, such as increased incidence of UVB radiation in aquatic ecosystems.


Asunto(s)
Apoptosis/efectos de la radiación , Daño del ADN , Embrión no Mamífero/efectos de la radiación , Expresión Génica/efectos de la radiación , Palaemonidae/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Ecosistema , Embrión no Mamífero/patología , Agua Dulce/química , Palaemonidae/embriología , Exposición a la Radiación/efectos adversos
11.
Gene ; 598: 97-106, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-27825774

RESUMEN

RT-qPCR is a sensitive and highly efficient technique that is widely used in gene expression analysis and to provide insight into the molecular mechanisms underlying embryonic development. The freshwater prawn, Macrobrachium olfersii is an emerging model organism, but, the stable reference genes of this species need to be identified and validated for RT-qPCR analysis. Thus, the aim of this study was to evaluate the expression stability of six genes (ß-act, GAPDH, EF-1α, RpL8, RpS6, AK) in embryos and in adult tissues (cerebral ganglia, muscle and hepatopancreas) of M. olfersii. The expression stabilities of these genes were evaluated using geNorm, NormFinder, BestKeeper, ΔCt method and integrated tool RefFinder. In the general ranking, RpL8 and RpS6 were the most stable genes in embryos, while RpS6 and RpL8 were the most stable in a combined adult tissue analysis. Analysis of the adult tissues revealed that ß-act and AK were the most stable genes in cerebral ganglia, RpL8 and AK in muscle, and RpS6 and ß-act in hepatopancreas. EF-1α and GAPDH were the least stable genes and as normalizer genes in RT-qPCR affected expression of the Distal-less gene during M. olfersii development. This study provides suitable reference genes for RT-qPCR analysis and allows future studies of the gene expression in M. olfersii for understanding the molecular mechanisms of their development. To our knowledge, this is the first published study that identifies and evaluates reference genes for RT-qPCR analysis in M. olfersii and could be useful as basis for evaluations of reference genes in other prawns.


Asunto(s)
Palaemonidae/embriología , Palaemonidae/genética , Animales , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Modelos Genéticos , Palaemonidae/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa , Distribución Tisular/genética
12.
Rev. peru. biol. (Impr.) ; 28(1): e18353, Jan-Mar 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1289880

RESUMEN

Abstract Bacteria and microbial enzymes are biocatalysts and can be used as an alternative to industrial chemical processes. The present study focused on isolating and identifying bacterial strains from shrimp waste, that produce amylases, lipases, proteases and chitinases with potential use on shrimp waste treatment. Thirtytwo bacterial strains were isolated, phenotypically characterized, and identified by the API system and the molecular analysis of the 16S rDNA. It was found that 28.13% of the isolated bacterial strains had amylolytic capacity, 87.50% lipolytic, 96.88% proteolytic and 28.13% chitinolytic capacity on agar plates with specific substrates. The genera Bacillus, Burkholderia, Ochrobactrum, Vibrio, Pseudomonas and Shewanella were identified. Bacteria with enzymatic capacities isolated in the present study, could be used to obtain by-products from shrimp waste as well as other industrial applications.


Resumen Las bacterias y enzimas microbianas son biocatalizadores y pueden ser usadas como alternativa en los procesos químicos industriales. El presente estudio se centró en aislar e identificar cepas bacterianas a partir de desechos de langostinos, capaces de producir amilasas, lipasas, proteasas y quitinasas, que tuvieran potencial aplicación en el tratamiento de residuos de langostinos. Se aisló treinta y dos cepas bacterianas, caracterizadas fenotípicamente e identificadas mediante el sistema API 20 y mediante análisis molecular basado en el ADNr 16S. Se encontró que el 28.13% de las cepas bacterianas aisladas tenían capacidad amilolítica, 87.50% lipolítica, 96.88% proteolítica y 28.13% capacidad quitinolítica en placas de agar con sustratos específicos. Los géneros identificados fueron Bacillus, Burkholderia, Ochrobactrum, Vibrio, Pseudomonas y Shewanella. Las bacterias con capacidades enzimáticas aisladas en el presente estudio, podrían ser usadas para obtener subproductos de los desechos de langostinos, así como en otras aplicaciones industriales.

13.
Bioinformation ; 8(15): 695-704, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23055613

RESUMEN

Molecular studies of enzymes involved in sulfite oxidation in Acidithiobacillus ferrooxidans have not yet been developed, especially in the ATP sulfurylase (ATPS) of these acidophilus tiobacilli that have importance in biomining. This enzyme synthesizes ATP and sulfate from adenosine phosphosulfate (APS) and pyrophosphate (PPi), final stage of the sulfite oxidation by these organisms in order to obtain energy. The atpS gene (1674 bp) encoding the ATPS from Acidithiobacillus ferrooxidans ATCC 23270 was amplified using PCR, cloned in the pET101-TOPO plasmid, sequenced and expressed in Escherichia coli obtaining a 63.5 kDa ATPS recombinant protein according to SDS-PAGE analysis. The bioinformatics and phylogenetic analyses determined that the ATPS from A. ferrooxidans presents ATP sulfurylase (ATS) and APS kinase (ASK) domains similar to ATPS of Aquifex aeolicus, probably of a more ancestral origin. Enzyme activity towards ATP formation was determined by quantification of ATP formed from E. coli cell extracts, using a bioluminescence assay based on light emission by the luciferase enzyme. Our results demonstrate that the recombinant ATP sulfurylase from A. ferrooxidans presents an enzymatic activity for the formation of ATP and sulfate, and possibly is a bifunctional enzyme due to its high homology to the ASK domain from A. aeolicus and true kinases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA