Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 77(9): 2441-2447, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35770844

RESUMEN

OBJECTIVES: Neisseria gonorrhoeae is an exclusively human pathogen that commonly infects the urogenital tract resulting in gonorrhoea. Empirical treatment of gonorrhoea with antibiotics has led to multidrug resistance and the need for new therapeutics. Inactivation of lipooligosaccharide phosphoethanolamine transferase A (EptA), which attaches phosphoethanolamine to lipid A, results in attenuation of the pathogen in infection models. Small molecules that inhibit EptA are predicted to enhance natural clearance of gonococci via the human innate immune response. METHODS: A library of small-fragment compounds was tested for the ability to enhance susceptibility of the reference strain N. gonorrhoeae FA1090 to polymyxin B. The effect of these compounds on lipid A synthesis and viability in models of infection were tested. RESULTS: Three compounds, 135, 136 and 137, enhanced susceptibility of strain FA1090 to polymyxin B by 4-fold. Pre-treatment of bacterial cells with all three compounds resulted in enhanced killing by macrophages. Only lipid A from bacterial cells exposed to compound 137 showed a 17% reduction in the level of decoration of lipid A with phosphoethanolamine by MALDI-TOF MS analysis and reduced stimulation of cytokine responses in THP-1 cells. Binding of 137 occurred with higher affinity to purified EptA than the starting material, as determined by 1D saturation transfer difference NMR. Treatment of eight MDR strains with 137 increased susceptibility to polymyxin B in all cases. CONCLUSIONS: Small molecules have been designed that bind to EptA, inhibit addition of phosphoethanolamine to lipid A and can sensitize N. gonorrhoeae to killing by macrophages.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Antibacterianos/metabolismo , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Farmacorresistencia Bacteriana , Etanolaminofosfotransferasa/metabolismo , Etanolaminas , Gonorrea/tratamiento farmacológico , Humanos , Lípido A/química , Pruebas de Sensibilidad Microbiana , Polimixina B/farmacología
2.
J Lipid Res ; 61(11): 1437-1449, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32839198

RESUMEN

Among the virulence factors in Neisseria infections, a major inducer of inflammatory cytokines is the lipooligosaccharide (LOS). The activation of NF-κB via extracellular binding of LOS or lipopolysaccharide (LPS) to the toll-like receptor 4 and its coreceptor, MD-2, results in production of pro-inflammatory cytokines that initiate adaptive immune responses. LOS can also be absorbed by cells and activate intracellular inflammasomes, causing the release of inflammatory cytokines and pyroptosis. Studies of LOS and LPS have shown that their inflammatory potential is highly dependent on lipid A phosphorylation and acylation, but little is known on the location and pattern of these posttranslational modifications. Herein, we report on the localization of phosphoryl groups on phosphorylated meningococcal lipid A, which has two to three phosphate and zero to two phosphoethanolamine substituents. Intact LOS with symmetrical hexa-acylated and asymmetrical penta-acylated lipid A moieties was subjected to high-resolution ion mobility spectrometry MALDI-TOF MS. LOS molecular ions readily underwent in-source decay to give fragments of the oligosaccharide and lipid A formed by cleavage of the ketosidic linkage, which enabled performing MS/MS (pseudo-MS3). The resulting spectra revealed several patterns of phosphoryl substitution on lipid A, with certain species predominating. The extent of phosphoryl substitution, particularly phosphoethanolaminylation, on the 4'-hydroxyl was greater than that on the 1-hydroxyl. The heretofore unrecognized phosphorylation patterns of lipid A of meningococcal LOS that we detected are likely determinants of both pathogenicity and the ability of the bacteria to evade the innate immune system.


Asunto(s)
Lípido A/análisis , Neisseria meningitidis/química , Conformación de Carbohidratos , Lípido A/metabolismo , Neisseria meningitidis/metabolismo , Fosforilación , Espectrometría de Masas en Tándem
3.
Proc Natl Acad Sci U S A ; 114(9): 2218-2223, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193899

RESUMEN

Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.


Asunto(s)
Proteínas Bacterianas/química , Etanolaminofosfotransferasa/química , Lípido A/química , Neisseria meningitidis/química , Periplasma/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminofosfotransferasa/genética , Etanolaminofosfotransferasa/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Lípido A/metabolismo , Simulación de Dinámica Molecular , Neisseria meningitidis/enzimología , Periplasma/enzimología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
4.
J Antimicrob Chemother ; 74(11): 3245-3251, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31424547

RESUMEN

OBJECTIVES: Cell-penetrating peptides (CPPs) have been evaluated for intracellular delivery of molecules and several CPPs have bactericidal activity. Our objectives were to determine the effect of a 12 amino acid CPPs on survival and on the invasive and inflammatory potential of Neisseria gonorrhoeae. METHODS: Survival of MDR and human challenge strains of N. gonorrhoeae grown in cell culture medium with 10% FBS was determined after treatment with the CPP and human antimicrobial peptide LL-37 for 4 h. Confocal microscopy was used to examine penetration of FITC-labelled CPP into bacterial cells. The ability of the CPP to prevent invasion of human ME-180 cervical epithelial cells and to reduce the induction of TNF-α in human THP-1 monocytic cells in response to gonococcal infection was assessed. Cytotoxicity of the CPP towards the THP-1 cells was determined. RESULTS: The CPP was bactericidal, with 95%-100% killing of all gonococcal strains at 100 µM. Confocal microscopy of gonococci incubated with FITC-labelled CPP revealed the penetration of the peptide. CPP treatment of N. gonorrhoeae inhibited gonococcal invasion of ME-180 cells and reduced the expression of TNF-α induced in THP-1 cells by gonococci. The CPP showed no cytotoxicity towards human THP-1 cells. CONCLUSIONS: Based on these promising results, future studies will focus on testing of CPP in the presence of other types of host cells and exploration of structural modifications of the CPP that could decrease its susceptibility to proteolysis and increase its potency.


Asunto(s)
Antibacterianos/farmacología , Péptidos de Penetración Celular/farmacología , Neisseria gonorrhoeae/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos de Penetración Celular/química , Cuello del Útero/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Femenino , Humanos , Monocitos/efectos de los fármacos , Monocitos/microbiología , Células THP-1 , Factor de Necrosis Tumoral alfa/análisis , Catelicidinas
5.
J Lipid Res ; 59(10): 1893-1905, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30049709

RESUMEN

The pathogenicity of Campylobacter concisus, increasingly found in the human gastrointestinal (GI) tract, is unclear. Some studies indicate that its role in GI conditions has been underestimated, whereas others suggest that the organism has a commensal-like phenotype. For the enteropathogen C. jejuni, the lipooligosaccharide (LOS) is a main driver of virulence. We investigated the LOS structure of four C. concisus clinical isolates and correlated the inflammatory potential of each isolate with bacterial virulence. Mass spectrometric analyses of lipid A revealed a novel hexa-acylated diglucosamine moiety with two or three phosphoryl substituents. Molecular and fragment ion analysis indicated that the oligosaccharide portion of the LOS had only a single phosphate and lacked phosphoethanolamine and sialic acid substitution, which are hallmarks of the C. jejuni LOS. Consistent with our structural findings, C. concisus LOS and live bacteria induced less TNF-α secretion in human monocytes than did C. jejuni Furthermore, the C. concisus bacteria were less virulent than C. jejuni in a Galleria mellonella infection model. The correlation of the novel lipid A structure, decreased phosphorylation, and lack of sialylation along with reduced inflammatory potential and virulence support the significance of the LOS as a determinant in the relative pathogenicity of C. concisus.


Asunto(s)
Campylobacter/metabolismo , Campylobacter/patogenicidad , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Campylobacter/genética , Campylobacter/fisiología , Línea Celular , Genómica , Humanos , Inflamación/microbiología , Lípido A/química , Lipopolisacáridos/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Virulencia
6.
J Antimicrob Chemother ; 73(8): 2064-2071, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29726994

RESUMEN

Objectives: Inhibitors of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC), which catalyses the second step in the biosynthesis of lipid A, have been developed as potential antibiotics for Gram-negative infections. Our objectives were to determine the effect of LpxC inhibition on the in vitro survival and inflammatory potential of Neisseria gonorrhoeae. Methods: Survival of four human challenge strains was determined after treatment with two LpxC inhibitors for 2 and 4 h. To confirm results from treatment and assess their anti-inflammatory effect, the expression of TNF-α by human THP-1 monocytic cells infected with bacteria in the presence of the LpxC inhibitors was quantified. Cytotoxicity of inhibitors for THP-1 cells was evaluated by release of lactate dehydrogenase. Survival of five MDR strains was determined after 2 h of treatment with an LpxC inhibitor and the effect of co-treatment on MICs of ceftriaxone and azithromycin was examined. Results: The inhibitors had bactericidal activity against the four human challenge and five MDR strains with one compound exhibiting complete killing at ≥5 mg/L after either 2 or 4 h of treatment. Treatment of gonococci infecting THP-1 monocytic cells reduced the levels of TNF-α probably owing to reduced numbers of bacteria and a lower level of expression of lipooligosaccharide. Neither inhibitor exhibited cytotoxicity for THP-1 cells. The MIC of azithromycin was slightly lowered by sublethal treatment of two MDR strains with an LpxC inhibitor. Conclusions: Our in vitro results demonstrated promising efficacy of LpxC inhibition of N. gonorrhoeae that warrants further investigation particularly owing to the rise in MDR gonorrhoea.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Neisseria gonorrhoeae/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Monocitos/citología , Monocitos/microbiología , Neisseria gonorrhoeae/enzimología , Células THP-1 , Factor de Necrosis Tumoral alfa/inmunología
7.
J Biol Chem ; 291(7): 3224-38, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26655715

RESUMEN

The degree of phosphorylation and phosphoethanolaminylation of lipid A on neisserial lipooligosaccharide (LOS), a major cell-surface antigen, can be correlated with inflammatory potential and the ability to induce immune tolerance in vitro. On the oligosaccharide of the LOS, the presence of phosphoethanolamine and sialic acid substituents can be correlated with in vitro serum resistance. In this study, we analyzed the structure of the LOS from 40 invasive isolates and 25 isolates from carriers of Neisseria meningitidis without disease. Invasive strains were classified as groups 1-3 that caused meningitis, septicemia without meningitis, and septicemia with meningitis, respectively. Intact LOS was analyzed by high resolution matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Prominent peaks for lipid A fragment ions with three phosphates and one phosphoethanolamine were detected in all LOS analyzed. LOS from groups 2 and 3 had less abundant ions for highly phosphorylated lipid A forms and induced less TNF-α in THP-1 monocytic cells compared with LOS from group 1. Lipid A from all invasive strains was hexaacylated, whereas lipid A of 6/25 carrier strains was pentaacylated. There were fewer O-acetyl groups and more phosphoethanolamine and sialic acid substitutions on the oligosaccharide from invasive compared with carrier isolates. Bioinformatic and genomic analysis of LOS biosynthetic genes indicated significant skewing to specific alleles, dependent on the disease outcome. Our results suggest that variable LOS structures have multifaceted effects on homeostatic innate immune responses that have critical impact on the pathophysiology of meningococcal infections.


Asunto(s)
Antígenos Bacterianos/toxicidad , Portador Sano/microbiología , Lipopolisacáridos/toxicidad , Meningitis Meningocócica/microbiología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis Serogrupo B/patogenicidad , Neisseria meningitidis Serogrupo C/patogenicidad , Acilación , Adolescente , Antígenos Bacterianos/biosíntesis , Antígenos Bacterianos/química , Portador Sano/sangre , Portador Sano/líquido cefalorraquídeo , Portador Sano/inmunología , Línea Celular Tumoral , Biología Computacional , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata/efectos de los fármacos , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/química , Meningitis Meningocócica/sangre , Meningitis Meningocócica/líquido cefalorraquídeo , Meningitis Meningocócica/inmunología , Infecciones Meningocócicas/sangre , Infecciones Meningocócicas/líquido cefalorraquídeo , Infecciones Meningocócicas/inmunología , Estructura Molecular , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Neisseria meningitidis Serogrupo B/clasificación , Neisseria meningitidis Serogrupo B/inmunología , Neisseria meningitidis Serogrupo B/metabolismo , Neisseria meningitidis Serogrupo C/clasificación , Neisseria meningitidis Serogrupo C/inmunología , Neisseria meningitidis Serogrupo C/metabolismo , Noruega , Fosforilación , Sepsis/sangre , Sepsis/líquido cefalorraquídeo , Sepsis/inmunología , Sepsis/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factor de Necrosis Tumoral alfa/metabolismo , Virulencia
8.
J Immunol ; 192(4): 1768-77, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24442429

RESUMEN

In this article, we report that retreatment of human monocytic THP-1 cells and primary monocytes with pathogenic Neisseria or with purified lipooligosaccharides (LOS) after previous exposure to LOS induced immune tolerance, as evidenced by reduced TNF-α and IL-1ß cytokine expression. LOS that we have previously shown to vary in their potential to activate TLR4 signaling, which was correlated with differences in levels of lipid A phosphorylation, had similarly variable ability to induce tolerance. Efficacy for induction of tolerance was proportional to the level of lipid A phosphorylation, as LOS from meningococcal strain 89I with the highest degree of phosphorylation was the most tolerogenic following retreatment with LOS or whole bacteria, compared with LOS from gonococcal strains 1291 and GC56 with reduced levels of phosphorylation. Hydrogen fluoride treatment of 89I LOS to remove phosphates rendered the LOS nontolerogenic. Tolerance induced by the more highly inflammatory meningococcal LOS was correlated with significantly greater downregulation of p38 activation, greater induction of the expression of A20 and of microRNA-146a, and greater reductions in IL-1R-associated kinase 1 and TRAF6 levels following LOS retreatment of cells. The role of miR-146a in regulation of induction of TNF-α was confirmed by transfecting cells with an inhibitor and a mimic of miR-146a. Our results provide a mechanistic framework for understanding the variable pathophysiology of meningococcal and gonococcal infections given that after an initial exposure, greater upregulation of microRNA-146a by more highly inflammatory LOS conversely leads to the suppression of immune responses, which would be expected to facilitate bacterial survival and dissemination.


Asunto(s)
Endotoxinas/inmunología , Tolerancia Inmunológica/inmunología , Lipopolisacáridos/inmunología , MicroARNs/metabolismo , Neisseria meningitidis/inmunología , Proteínas de Unión al ADN/biosíntesis , Activación Enzimática , Gonorrea/inmunología , Humanos , Ácido Fluorhídrico/farmacología , Tolerancia Inmunológica/efectos de los fármacos , Inflamación/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Lípido A/metabolismo , Meningitis Meningocócica/inmunología , MicroARNs/biosíntesis , Monocitos/inmunología , Neisseria gonorrhoeae/inmunología , Proteínas Nucleares/biosíntesis , Fosforilación , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
J Biol Chem ; 288(27): 19661-72, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23629657

RESUMEN

Campylobacter jejuni is a leading cause of acute gastroenteritis. C. jejuni lipooligosaccharide (LOS) is a potent activator of Toll-like receptor (TLR) 4-mediated innate immunity. Structural variations of the LOS have been previously reported in the oligosaccharide (OS) moiety, the disaccharide lipid A (LA) backbone, and the phosphorylation of the LA. Here, we studied LOS structural variation between C. jejuni strains associated with different ecological sources and analyzed their ability to activate TLR4 function. MALDI-TOF MS was performed to characterize structural variation in both the OS and LA among 15 different C. jejuni isolates. Cytokine induction in THP-1 cells and primary monocytes was correlated with LOS structural variation in each strain. Additionally, structural variation was correlated with the source of each strain. OS sialylation, increasing abundance of LA d-glucosamine versus 2,3-diamino-2,3-dideoxy-d-glucose, and phosphorylation status all correlated with TLR4 activation as measured in THP-1 cells and monocytes. Importantly, LOS-induced inflammatory responses were similar to those elicited by live bacteria, highlighting the prominent contribution of the LOS component in driving host immunity. OS sialylation status but not LA structure showed significant association with strains clustering with livestock sources. Our study highlights how variations in three structural components of C. jejuni LOS alter TLR4 activation and consequent monocyte activation.


Asunto(s)
Campylobacter jejuni/metabolismo , Lipopolisacáridos/metabolismo , Monocitos/metabolismo , Receptor Toll-Like 4/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/inmunología , Conformación de Carbohidratos , Línea Celular Tumoral , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Lipopolisacáridos/genética , Lipopolisacáridos/inmunología , Monocitos/inmunología , Fosforilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
10.
bioRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38293026

RESUMEN

Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophil influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-NANA) scavenged from the host using LOS sialyltransferase (Lst), since Gc cannot make its own sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea.

11.
mBio ; 15(5): e0011924, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587424

RESUMEN

Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophilic influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid, which is scavenged from the host using LOS sialyltransferase (Lst) since Gc cannot make its sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress the oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea. IMPORTANCE: Neisseria gonorrhoeae, the bacterium that causes gonorrhea, is an urgent global health concern due to increasing infection rates, widespread antibiotic resistance, and its ability to thwart protective immune responses. The mechanisms by which Gc subverts protective immune responses remain poorly characterized. One way N. gonorrhoeae evades human immunity is by adding sialic acid that is scavenged from the host onto its lipooligosaccharide, using the sialyltransferase Lst. Here, we found that sialylation enhances N. gonorrhoeae survival from neutrophil assault and inhibits neutrophil activation, independently of the complement system. Our results implicate bacterial binding of sialic acid-binding lectins (Siglecs) on the neutrophil surface, which dampens neutrophil antimicrobial responses. This work identifies a new role for sialylation in protecting N. gonorrhoeae from cellular innate immunity, which can be targeted to enhance the human immune response in gonorrhea.


Asunto(s)
Gonorrea , Ácido N-Acetilneuramínico , Neisseria gonorrhoeae , Activación Neutrófila , Neutrófilos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Neisseria gonorrhoeae/inmunología , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Gonorrea/inmunología , Gonorrea/microbiología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Estallido Respiratorio , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune
12.
Front Microbiol ; 14: 1215946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779694

RESUMEN

The alarming rise of antibiotic resistance and the emergence of new vaccine technologies have increased the focus on vaccination to control gonorrhea. Neisseria gonorrhoeae strains FA1090 and MS11 have been used in challenge studies in human males. We used negative-ion MALDI-TOF MS to profile intact lipooligosaccharide (LOS) from strains MS11mkA, MS11mkC, FA1090 A23a, and FA1090 1-81-S2. The MS11mkC and 1-81-S2 variants were isolated from male volunteers infected with MS11mkA and A23a, respectively. LOS profiles were obtained after purification using the classical phenol water extraction method and by microwave-enhanced enzymatic digestion, which is more amenable for small-scale work. Despite detecting some differences in the LOS profiles, the same major species were observed, indicating that microwave-enhanced enzymatic digestion is appropriate for MS studies. The compositions determined for MS11mkA and mkC LOS were consistent with previous reports. FA1090 is strongly recognized by mAb 2C7, an antibody-binding LOS with both α- and ß-chains if the latter is a lactosyl group. The spectra of the A23a and 1-81-S2 FA1090 LOS were similar to each other and consistent with the expression of α-chain lacto-N-neotetraose and ß-chain lactosyl moieties that can both be acceptor sites for sialic acid substitution. 1-81-S2 LOS was analyzed after culture with and without media supplemented with cytidine-5'-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac), which N. gonorrhoeae needs to sialylate its LOS. LOS sialylation reduces the infectivity of gonococci in men, although it induces serum resistance in serum-sensitive strains and reduces killing by neutrophils and antimicrobial peptides. The infectivity of FA1090 in men is much lower than that of MS11mkC, but the reason for this difference is unclear. Interestingly, some peaks in the spectra of 1-81-S2 LOS after bacterial culture with CMP-Neu5Ac were consistent with disialylation of the LOS, which could be relevant to the reduced infectivity of FA1090 in men and could have implications regarding the phase variation of the LOS and the natural history of infection.

13.
J Biol Chem ; 286(51): 43622-43633, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22027827

RESUMEN

Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains.


Asunto(s)
Inmunoglobulina G/química , Lipopolisacáridos/química , Neisseria meningitidis/metabolismo , Oligosacáridos/química , Antígenos/química , Secuencia de Carbohidratos , Enfermedades Transmisibles/metabolismo , Genotipo , Humanos , Espectrometría de Masas/métodos , Vacunas Meningococicas/inmunología , Mutación , Oligonucleótidos/química
14.
Infect Immun ; 80(11): 4014-26, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22949553

RESUMEN

The interaction of the immune system with Neisseria commensals remains poorly understood. We have previously shown that phosphoethanolamine on the lipid A portion of lipooligosaccharide (LOS) plays an important role in Toll-like receptor 4 (TLR4) signaling. For pathogenic Neisseria, phosphoethanolamine is added to lipid A by the phosphoethanolamine transferase specific for lipid A, which is encoded by lptA. Here, we report that Southern hybridizations and bioinformatics analyses of genomic sequences from all eight commensal Neisseria species confirmed that lptA was absent in 15 of 17 strains examined but was present in N. lactamica. Mass spectrometry of lipid A and intact LOS revealed the lack of both pyrophosphorylation and phosphoethanolaminylation in lipid A of commensal species lacking lptA. Inflammatory signaling in human THP-1 monocytic cells was much greater with pathogenic than with commensal Neisseria strains that lacked lptA, and greater sensitivity to polymyxin B was consistent with the absence of phosphoethanolamine. Unlike the other commensals, whole bacteria of two N. lactamica commensal strains had low inflammatory potential, whereas their lipid A had high-level pyrophosphorylation and phosphoethanolaminylation and induced high-level inflammatory signaling, supporting previous studies indicating that this species uses mechanisms other than altering lipid A to support commensalism. A meningococcal lptA deletion mutant had reduced inflammatory potential, further illustrating the importance of lipid A pyrophosphorylation and phosphoethanolaminylation in the bioactivity of LOS. Overall, our results indicate that lack of pyrophosphorylation and phosphoethanolaminylation of lipid A contributes to the immune privilege of most commensal Neisseria strains by reducing the inflammatory potential of LOS.


Asunto(s)
Inflamación/inmunología , Lípido A/metabolismo , Neisseria/inmunología , Southern Blotting , Células Cultivadas , Biología Computacional , Humanos , Lípido A/inmunología , Neisseria/patogenicidad , Fosforilación , Transducción de Señal , Espectrometría de Masas en Tándem
15.
J Immunol ; 185(11): 6974-84, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21037101

RESUMEN

We have previously shown that the lipooligosaccharide (LOS) from Neisseria meningitidis and N. gonorrhoeae engages the TLR4-MD-2 complex. In this study, we report that LOS from different meningococcal and gonococcal strains have different potencies to activate NF-κB through TLR4-MD-2 and that the relative activation can be correlated with ion abundances in MALDI-TOF mass spectrometry that are indicative of the number of phosphoryl substituents on the lipid A (LA) component of the LOS. The LOSs from three of the strains, meningococcal strain 89I and gonococcal strains 1291 and GC56, representing high, intermediate, and low potency on NF-κB activation, respectively, differently activated cytokine expression through the TLR4-MD-2 pathway in monocytes. In addition to induction of typical inflammatory cytokines such as TNF-α, IL-1ß, and IL-6, MIP-1α and MIP-1ß also were significantly higher in cells treated with 89I LOS, which had the most phosphoryl substitutions on the LA compared with 1291 LOS and GC56 LOS. We found that LOS activated both the MyD88- and TRIF-dependent pathways through NF-κB and IFN regulatory factor 3 transcription factors, respectively. Moreover, LOS induced the expression of costimulatory molecule CD80 on the surfaces of monocytes via upregulation of IFN regulatory factor 1. These results suggest that phosphoryl moieties of LA from N. meningitidis and N. gonorrhoeae LOSs play an important role in activation of both the MyD88- and TRIF-dependent pathways. Our findings are consistent with the concept that bacteria modulate pathogen-associated molecular patterns by expression of phosphoryl moieties on the LA to optimize interactions with the host.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Lípido A/fisiología , Lipopolisacáridos/fisiología , Antígeno 96 de los Linfocitos/fisiología , Factor 88 de Diferenciación Mieloide/metabolismo , Neisseria gonorrhoeae/química , Neisseria meningitidis/química , Transducción de Señal/inmunología , Receptor Toll-Like 4/fisiología , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Antígeno B7-1/biosíntesis , Línea Celular , Humanos , Factor 1 Regulador del Interferón/biosíntesis , Factor 3 Regulador del Interferón/fisiología , Lípido A/química , Lipopolisacáridos/química , Antígeno 96 de los Linfocitos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/microbiología , Factor 88 de Diferenciación Mieloide/fisiología , FN-kappa B/fisiología , Neisseria gonorrhoeae/inmunología , Neisseria meningitidis/inmunología , Fosforilación/inmunología , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba/inmunología
16.
J Immunol ; 184(6): 2814-24, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20147631

RESUMEN

Sexually transmitted infections increase the likelihood of HIV-1 transmission. We investigated the effect of Neisseria gonorrheae (gonococcus [GC]) exposure on HIV replication in primary resting CD4(+) T cells, a major HIV target cell during the early stage of sexual transmission of HIV. GC and TLR2 agonists, such as peptidylglycan (PGN), Pam(3)CSK(4), and Pam(3)C-Lip, a GC-derived synthetic lipopeptide, but not TLR4 agonists including LPS or GC lipooligosaccharide enhanced HIV-1 infection of primary resting CD4(+) T cells after viral entry. Pretreatment of CD4(+) cells with PGN also promoted HIV infection. Anti-TLR2 Abs abolished the HIV enhancing effect of GC and Pam(3)C-Lip, indicating that GC-mediated enhancement of HIV infection of resting CD4(+) T cells was through TLR2. IL-2 was required for TLR2-mediated HIV enhancement. PGN and GC induced cell surface expression of T cell activation markers and HIV coreceptors, CCR5 and CXCR4. The maximal postentry HIV enhancing effect was achieved when PGN was added immediately after viral exposure. Kinetic studies and analysis of HIV DNA products indicated that GC exposure and TLR2 activation enhanced HIV infection at the step of nuclear import. We conclude that GC enhanced HIV infection of primary resting CD4(+) T cells through TLR2 activation, which both increased the susceptibility of primary CD4(+) T cells to HIV infection as well as enhanced HIV-infected CD4(+) T cells at the early stage of HIV life cycle after entry. This study provides a molecular mechanism by which nonulcerative sexually transmitted infections mediate enhancement of HIV infection and has implication for HIV prevention and therapeutics.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , VIH-1/inmunología , Neisseria gonorrhoeae/inmunología , Fase de Descanso del Ciclo Celular/inmunología , Receptor Toll-Like 2/metabolismo , Transporte Activo de Núcleo Celular/inmunología , Secuencia de Aminoácidos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Línea Celular , Células Cultivadas , Infecciones por VIH/inmunología , Infecciones por VIH/microbiología , Infecciones por VIH/transmisión , Humanos , Datos de Secuencia Molecular , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/fisiología
17.
J Immunol ; 182(10): 6460-9, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19414800

RESUMEN

Neisseria gonorrhoeae is a common sexually transmitted pathogen that significantly impacts female fertility, neonatal health, and transmission of HIV worldwide. N. gonorrhoeae usually causes localized inflammation of the urethra and cervix by inducing production of IL-1beta and other inflammatory cytokines. Several NLR (nucleotide-binding domain, leucine-rich repeat) proteins are implicated in the formation of pro-IL-1beta-processing complexes called inflammasomes in response to pathogens. We demonstrate that NLRP3 (cryopyrin, NALP3) is the primary NLR required for IL-1beta/IL-18 secretion in response to N. gonorrhoeae in monocytes. We also show that N. gonorrhoeae infection promotes NLRP3-dependent monocytic cell death via pyronecrosis, a recently described pathway with morphological features of necrosis, including release of the strong inflammatory mediator HMBG1. Additionally, N. gonorrhoeae activates the cysteine protease cathepsin B as measured by the breakdown of a cathepsin B substrate. Inhibition of cathepsin B shows that this protease is an apical controlling step in the downstream activities of NLRP3 including IL-1beta production, pyronecrosis, and HMGB1 release. Nonpathogenic Neisseria strains (Neisseria cinerea and Neisseria flavescens) do not activate NLRP3 as robustly as N. gonorrhoeae. Conditioned medium from N. gonorrhoeae contains factors capable of initiating the NLRP3-mediated signaling events. Isolated N. gonorrhoeae lipooligosaccharide, a known virulence factor from this bacterium that is elaborated from the bacterium in the form of outer membrane blebs, activates both NLRP3-induced IL-1beta secretion and pyronecrosis. Our findings indicate that activation of NLRP3-mediated inflammatory response pathways is an important venue associated with host response and pathogenesis of N. gonorrhoeae.


Asunto(s)
Proteínas Portadoras/inmunología , Catepsina B/inmunología , Proteínas del Citoesqueleto/inmunología , Inflamación/inmunología , Neisseria gonorrhoeae/inmunología , Transducción de Señal/inmunología , Animales , Proteínas Reguladoras de la Apoptosis , Western Blotting , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/metabolismo , Catepsina B/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Activación Enzimática/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteína HMGB1/inmunología , Proteína HMGB1/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-18/inmunología , Interleucina-18/metabolismo , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Noqueados , Monocitos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR , Necrosis/inmunología , ARN Interferente Pequeño
18.
J Gastrointest Surg ; 11(8): 977-83; discussion 983-4, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17546479

RESUMEN

OBJECTIVE: Gallstone bacteria provide a reservoir for biliary infections. Slime production facilitates adherence, whereas beta-glucuronidase and phospholipase generate colonization surface. These factors facilitate gallstone formation, but their influence on infection severity is unknown. METHODS: Two hundred ninety-two patients were studied. Gallstones, bile, and blood (as applicable) were cultured. Bacteria were tested for beta-glucuronidase/phospholipase production and quantitative slime production. Infection severity was correlated with bacterial factors. RESULTS: Bacteria were present in 43% of cases, 13% with bacteremia. Severe infections correlated directly with beta-glucuronidase/phospholipase (55% with vs 13% without, P < 0.0001), but inversely with slime production (55 vs 8%, slime <75 or >75, P = 0.008). Low slime production and beta-glucuronidase/phospholipase production were additive: Severe infections were present in 76% with both, but 10% with either or none (P < 0.0001). beta-Glucuronidase/phospholipase production facilitated bactibilia (86% with vs 62% without, P = 0.03). Slime production was 19 (+/-8) vs 50 (+/-10) for bacteria that did or did not cause bacteremia (P = 0.004). No bacteria with slime >75 demonstrated bacteremia. CONCLUSIONS: Bacteria-laden gallstones are biofilms whose characteristics influence illness severity. Factors creating colonization surface (beta-glucuronidase/phospholipase) facilitated bacteremia and severe infections; but abundant slime production, while facilitating colonization, inhibited detachment and cholangiovenous reflux. This shows how properties of the gallstone biofilm determine the severity of the associated illness.


Asunto(s)
Bacteriemia/etiología , Biopelículas , Cálculos Biliares/complicaciones , Cálculos Biliares/microbiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pigmentos Biológicos , Estudios Prospectivos , Índice de Severidad de la Enfermedad
19.
J Gastrointest Surg ; 11(10): 1298-308, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17653596

RESUMEN

PURPOSE: The clinical significance of bacteria in the pigment centers of cholesterol stones is unknown. We compared the infectious manifestations and characteristics of bacteria from pigment stones and predominantly cholesterol stones. METHODS: Three hundred forty patients were studied. Bile was cultured. Gallstones were cultured and examined with scanning electron microscopy. Level of bacterial immunoglobulin G (bile, serum), complement killing, and tumor necrosis factor-alpha production were determined. RESULTS: Twenty-three percent of cholesterol stones and 68% of pigment stones contained bacteria (P < 0.0001). Stone culture correlated with scanning electron microscopy results. Pigment stone bacteria were more often present in bile and blood. Cholesterol stone bacteria caused more severe infections (19%) than sterile stones (0%), but less than pigment stone bacteria (57%) (P < 0.0001). Serum and bile from patients with cholesterol stone bacteria had less bacterial-specific immunoglobulin G. Cholesterol stone bacteria produced more slime. Pigment stone bacteria were more often killed by a patient's serum. Tumor necrosis factor-alpha production of the groups was similar. CONCLUSIONS: Bacteria are readily cultured from cholesterol stones with pigment centers, allowing for analysis of their virulence factors. Bacteria sequestered in cholesterol stones cause infectious manifestations, but less than bacteria in pigment stones. Possibly because of their isolation, cholesterol stone bacteria were less often present in bile and blood, induced less immunoglobulin G, were less often killed by a patient's serum, and demonstrated fewer infectious manifestations than pigment stone bacteria. This is the first study to analyze the clinical relevance of bacteria within cholesterol gallstones.


Asunto(s)
Cálculos Biliares/química , Cálculos Biliares/microbiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bacterias/aislamiento & purificación , Femenino , Cálculos Biliares/patología , Humanos , Inmunoglobulina G/análisis , Masculino , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Pigmentos Biológicos/análisis , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/análisis , Virulencia
20.
Pathog Dis ; 75(3)2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28423169

RESUMEN

Infections due to Neisseria meningitidis afflict more than one million people worldwide annually and cause death or disability in many survivors. The clinical course of invasive infections has been well studied, but our understanding of the cause of differences in patient outcomes has been limited because these are dependent on multiple factors including the response of the host, characteristics of the bacteria and interactions between the host and the bacteria. The meningococcus is a highly inflammatory organism, and the lipooligosaccharide (LOS) on the outer membrane is the most potent inflammatory molecule it expresses due to the interactions of the lipid A moiety of LOS with receptors of the innate immune system. We previously reported that increased phosphorylation of hexaacylated neisserial lipid A is correlated with greater inflammatory potential. Here we postulate that variability in lipid A phosphorylation can tip the balance of innate immune responses towards homeostatic tolerance or proinflammatory signaling that affects adaptive immune responses, causing disease with meningitis only, or septicemia with or without meningitis, respectively. Furthermore, we propose that studies of the relationship between bacterial virulence and gene expression should consider whether genetic variation could affect properties of biosynthetic enzymes resulting in LOS structural differences that alter disease pathobiology.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Lipopolisacáridos/inmunología , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Biomarcadores , Citocinas/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad Innata/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/química , Infecciones Meningocócicas/metabolismo , Neisseria meningitidis/patogenicidad , Transducción de Señal , Factores de Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA