Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Arch Biochem Biophys ; 743: 109667, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327962

RESUMEN

The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.


Asunto(s)
Complejo IV de Transporte de Electrones , Oxígeno , Complejo IV de Transporte de Electrones/metabolismo , Oxígeno/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxidorreductasas/metabolismo , Metano/metabolismo , Citocromos/metabolismo , Acetatos , Lactatos/metabolismo
2.
Curr Microbiol ; 80(8): 257, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358656

RESUMEN

The crater lake at "El Chichón" volcano is an extreme acid-thermal environment with high concentrations of heavy metals. In this study, two bacterial strains with the ability to resist high concentrations of arsenic (As) were isolated from water samples from the crater lake. Staphylococcus ARSC1-P and Stenotrophomonas ARSC2-V isolates were identified by use of the 16S rDNA gene. Staphylococcus ARSC1-P was able to grow in 400 mM of arsenate [As(V)] under oxic and anoxic conditions. The IC50 values were 36 and 382 mM for oxic and anoxic conditions, respectively. For its part, Stenotrophomonas ARSC2-V showed IC50 values of 110 mM and 2.15 for As(V) and arsenite [As(III)], respectively. Arsenic accumulated intracellularly in both species [11-25 nmol As × mg cellular prot-1 in cells cultured in 50 mM As(V)]. The present study shows evidence of microbes that can potentially be a resource for the bio-treatment of arsenic in contaminated sites, which highlights the importance of the "El Chichón" volcano as a source of bacterial strains that are adaptable to extreme conditions.


Asunto(s)
Arsénico , Extremófilos , México , Lagos , Bacterias , ARN Ribosómico 16S/genética
3.
J Cell Biochem ; 123(4): 701-718, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34931340

RESUMEN

Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.


Asunto(s)
Redes y Vías Metabólicas , Procesamiento Proteico-Postraduccional , Acetilación , Histonas , Cinética
4.
Environ Res ; 203: 111862, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34400165

RESUMEN

El Chichón volcano is one of the most active volcanoes in Mexico. Previous studies have described its poly-extreme conditions and its bacterial composition, although the functional features of the complete microbiome have not been characterized yet. By using metabarcoding analysis, metagenomics, metabolomics and enzymology techniques, the microbiome of the crater lake was characterized in this study. New information is provided on the taxonomic and functional diversity of the representative Archaea phyla, Crenarchaeota and Euryarchaeota, as well as those that are representative of Bacteria, Thermotogales and Aquificae. With culture of microbial consortia and with the genetic information collected from the natural environment sampling, metabolic interactions were identified between prokaryotes, which can withstand multiple extreme conditions. The existence of a close relationship between the biogeochemical cycles of carbon and sulfur in an active volcano has been proposed, while the relationship in the energy metabolism of thermoacidophilic bacteria and archaea in this multi-extreme environment was biochemically revealed for the first time. These findings contribute towards understanding microbial metabolism under extreme conditions, and provide potential knowledge pertaining to "microbial dark matter", which can be applied to biotechnological processes and evolutionary studies.


Asunto(s)
Metagenómica , Microbiota , Archaea/genética , Lagos , Metagenoma , Filogenia
5.
Arch Microbiol ; 202(3): 617-622, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31773196

RESUMEN

The repurposing of gallium nitrate as an antibacterial, a drug used previously for the treatment of hypercalcemia, is a plausible alternative to combat infections by Pseudomonas aeruginosa, since it has antipseudomonal properties in vitro and in vivo in animal models and in human lung infections. Furthermore, gallium nitrate tolerance in clinical isolates is very rare. Nevertheless, studies on the reference strains PA14 and PAO1 show that resistance against gallium nitrate is achieved by decreasing gallium intracellular levels by increasing the production of pyocyanin. In this work, we induced resistance in a cystic fibrosis P. aeruginosa isolate and explored its resistance mechanisms. This isolated strain, INP-58M, was not a pyocyanin producer, and its pyoverdine levels remained unchanged upon gallium addition. However, it showed higher activities of NADPH-producing enzymes and the antioxidant enzyme SOD when gallium was added, which suggests a better antioxidant response. Remarkably, gallium intracellular levels in the resistant isolate were higher than those of the parental strain at 20 h but lower after 24 h of culture, suggesting that this strain is capable of gallium efflux.


Asunto(s)
Antibacterianos/farmacología , Fibrosis Quística/microbiología , Galio/farmacología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Reposicionamiento de Medicamentos , Farmacorresistencia Bacteriana , Humanos , Oligopéptidos/biosíntesis , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesis
6.
Arch Biochem Biophys ; 669: 39-49, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31128085

RESUMEN

To enhance our understanding of the control of archaeal carbon central metabolism, a detailed analysis of the regulation mechanisms of both fructose1,6-bisphosphatase (FruBPase) and ADP-phosphofructokinase-1 (ADP-PFK1) was carried out in the methanogen Methanosarcina acetivorans. No correlations were found among the transcript levels of the MA_1152 and MA_3563 (frubpase type II and pfk1) genes, the FruBPase and ADP-PFK1 activities, and their protein contents. The kinetics of the recombinant FruBPase II and ADP-PFK1 were hyperbolic and showed simple mixed-type inhibition by AMP and ATP, respectively. Under physiological metabolite concentrations, the FruBPase II and ADP-PFK1 activities were strongly modulated by their inhibitors. To assess whether these enzymes were also regulated by a phosphorylation/dephosphorylation process, the recombinant enzymes and cytosolic-enriched fractions were incubated in the presence of commercial protein phosphatase or protein kinase. De-phosphorylation of ADP-PFK1 slightly decreased its activity (i.e. Vmax) and did not change its kinetic parameters and oligomeric state. Thus, the data indicated a predominant metabolic regulation of both FruBPase and ADP-PFK1 activities by adenine nucleotides and suggested high degrees of control on the respective pathway fluxes.


Asunto(s)
Proteínas Arqueales/metabolismo , Fructosa-Bifosfatasa/metabolismo , Methanosarcina/metabolismo , Fosfofructoquinasa-1/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Pollos , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/aislamiento & purificación , Fructosafosfatos/metabolismo , Genes Arqueales , Cinética , Methanosarcina/genética , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/aislamiento & purificación , Fosforilación , Inhibidores de Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional
7.
J Bacteriol ; 199(2)2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799324

RESUMEN

The multisubunit cation/proton antiporter 3 family, also called Mrp, is widely distributed in all three phylogenetic domains (Eukarya, Bacteria, and Archaea). Investigations have focused on Mrp complexes from the domain Bacteria to the exclusion of Archaea, with a consensus emerging that all seven subunits are required for Na+/H+ antiport activity. The MrpA subunit from the MrpABCDEFG Na+/H+ antiporter complex of the archaeon Methanosarcina acetivorans was produced in antiporter-deficient Escherichia coli strains EP432 and KNabc and biochemically characterized to determine the role of MrpA in the complex. Both strains containing MrpA grew in the presence of up to 500 mM NaCl and pH values up to 11.0 with no added NaCl. Everted vesicles from the strains containing MrpA were able to generate a NADH-dependent pH gradient (ΔpH), which was abated by the addition of monovalent cations. The apparent Km values for Na+ and Li+ were similar and ranged from 31 to 63 mM, whereas activity was too low to determine the apparent Km for K+ Optimum activity was obtained between pH 7.0 and 8.0. Homology molecular modeling identified two half-closed symmetry-related ion translocation channels that are linked, forming a continuous path from the cytoplasm to the periplasm, analogous to the NuoL subunit of complex I. Bioinformatics analyses revealed genes encoding homologs of MrpABCDEFG in metabolically diverse methane-producing species. Overall, the results advance the biochemical, evolutionary, and physiological understanding of Mrp complexes that extends to the domain Archaea IMPORTANCE: The work is the first reported characterization of an Mrp complex from the domain Archaea, specifically methanogens, for which Mrp is important for acetotrophic growth. The results show that the MrpA subunit is essential for antiport activity and, importantly, that not all seven subunits are required, which challenges current dogma for Mrp complexes from the domain Bacteria A mechanism is proposed in which an MrpAD subcomplex catalyzes Na+/H+ antiport independent of an MrpBCEFG subcomplex, although the activity of the former is modulated by the latter. Properties of MrpA strengthen proposals that the Mrp complex is of ancient origin and that subunits were recruited to evolve the ancestral complex I. Finally, bioinformatics analyses indicate that Mrp complexes function in diverse methanogenic pathways.


Asunto(s)
Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología , Methanosarcina/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Arqueales/genética , Transporte Biológico , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Litio/metabolismo , Methanosarcina/genética , Modelos Moleculares , Filogenia , Conformación Proteica , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
8.
Bioorg Med Chem Lett ; 27(15): 3403-3407, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28648464

RESUMEN

Twelve novel benzimidazole derivatives were synthesized and their in vitro activities against epimastigotes of Trypanosoma cruzi were evaluated. Two derivatives (6 and 7), which have 4-hydroxy-3-methoxyphenyl moiety in their structures, proved to be the most active in inhibiting the parasite growth. Compound 6 showed a trypanocidal activity higher than benznidazole (IC50=5µM and 7.5µM, respectively) and less than nifurtimox (IC50=3.6µM). In addition, the ability of 6 and 7 to modify the redox homeostasis in T cruzi epimastigote was studied; cysteine and glutathione increased in parasites exposed to both compounds, whereas trypanothione only increased with 7 treatment. These results suggest that the decrease in viability of T. cruzi may be attributed to the change in cellular redox balance caused by compound 6 or 7. Furthermore, compounds 6 and 7 showed CC50 values of 160.64 and 160.66µM when tested in mouse macrophage cell line J774 and selectivity indexes (macrophage/parasite) of 32 and 20.1, respectively.


Asunto(s)
Bencimidazoles/farmacología , Homeostasis/efectos de los fármacos , Hidrazinas/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Bencimidazoles/síntesis química , Bencimidazoles/química , Relación Dosis-Respuesta a Droga , Hidrazinas/síntesis química , Hidrazinas/química , Ratones , Estructura Molecular , Oxidación-Reducción , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/metabolismo
9.
Adv Exp Med Biol ; 979: 91-121, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28429319

RESUMEN

Free-living microorganisms may become suitable models for removal of heavy metals from polluted water bodies, sediments, and soils by using and enhancing their metal accumulating abilities. The available research data indicate that protists of the genus Euglena are a highly promising group of microorganisms to be used in bio-remediation of heavy metal-polluted aerobic and anaerobic acidic aquatic environments. This chapter analyzes the variety of biochemical mechanisms evolved in E. gracilis to resist, accumulate and remove heavy metals from the environment, being the most relevant those involving (1) adsorption to the external cell pellicle; (2) intracellular binding by glutathione and glutathione polymers, and their further compartmentalization as heavy metal-complexes into chloroplasts and mitochondria; (3) polyphosphate biosynthesis; and (4) secretion of organic acids. The available data at the transcriptional, kinetic and metabolic levels on these metabolic/cellular processes are herein reviewed and analyzed to provide mechanistic basis for developing genetically engineered Euglena cells that may have a greater removal and accumulating capacity for bioremediation and recycling of heavy metals.


Asunto(s)
Resistencia a Medicamentos/fisiología , Euglena/fisiología , Metales Pesados/metabolismo , Biodegradación Ambiental
10.
Microbiol Resour Announc ; 13(8): e0052624, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39037315

RESUMEN

The Chichon volcano contains several thermal manifestations including an acidic crater lake. Here we report a metagenome-assembled genome of "Candidatus Aramenus sp. CH1," a Sulfolobales archaeon inhabiting the crater lake from the Chichon volcano. In this study, we generated a novel Aramenus genome sequence from a thermal area in Southern Mexico.

11.
Metabolites ; 14(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39195531

RESUMEN

Metabolic alterations are recognized as one of the hallmarks of cancer. Among these, alterations in mitochondrial function have been associated with an enhanced production of Reactive Oxygen Species (ROS), which activate ROS-regulated cancer cell signaling pathways. Breast cancer is the main cancer-related cause of death for women globally. It is a heterogeneous disease with subtypes characterized by specific molecular features and patient outcomes. With the purpose of identifying differences in energy metabolism and the oxidative stress management system in non-tumorigenic, estrogen receptor positive (ER+) and triple negative (TN) breast cancer cells, we evaluated ROS production, protein enzyme levels and activities and profiled energy metabolism. We found differences in energetic metabolism and ROS management systems between non-tumorigenic and cancer cells and between ER+ and TN breast cancer cells. Our results indicate a dependence on glycolysis despite different glycolytic ATP levels in all cancer cell lines tested. In addition, our data show that high levels of ROS in TN cells are a result of limited antioxidant capacity in the NADPH producing and GSH systems, mitochondrial dysfunction and non-mitochondrial ROS production, making them more sensitive to GSH synthesis inhibitors. Our data suggest that metabolic and antioxidant profiling of breast cancer will provide important targets for metabolic inhibitors or antioxidant treatments for breast cancer therapy.

12.
J Bacteriol ; 195(17): 3987-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23836862

RESUMEN

The role of the multisubunit sodium/proton antiporter (Mrp) of Methanosarcina acetivorans was investigated with a mutant deleted for the gene encoding the MrpA subunit. Antiporter activity was 5-fold greater in acetate-grown versus methanol-grown wild-type cells, consistent with the previously published relative levels of mrp transcript. The rate, final optical density, and dry weight/methane ratio decreased for the mutant versus wild type when cultured with a growth-limiting concentration of acetate. All growth parameters of the mutant or wild type were identical when grown with methanol in medium containing a growth-limiting Na(+) concentration of 1.04 M. The lag phase, growth rate, and final optical density for growth of the mutant were suboptimal compared to the wild type when cultured with acetate in medium containing either 0.54 or 1.04 M Na(+). The addition of 25 mM NaCl to resting cell suspensions stimulated ATP synthesis driven by a potassium diffusion potential. ATP synthesis was greater in wild-type than mutant cells grown with acetate, a trend that held for methanol-grown cells, albeit less pronounced. Both sodium and proton ionophores reduced ATP synthesis in the wild type grown with either substrate. The results indicated that the Mrp complex is essential for efficient ATP synthesis and optimal growth at the low concentrations of acetate encountered in the environment.


Asunto(s)
Acetatos/metabolismo , Proteínas Arqueales/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica Arqueal , Methanosarcina/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Adenosina Trifosfato/biosíntesis , Proteínas Arqueales/genética , Eliminación de Gen , Metanol/metabolismo , Methanosarcina/genética , Methanosarcina/crecimiento & desarrollo , Cloruro de Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
13.
Int J Med Microbiol ; 303(8): 574-82, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23992635

RESUMEN

Pseudomonas aeruginosa PA14 cells resistant to the novel antimicrobial gallium nitrate (Ga) were developed using transposon mutagenesis and by selecting spontaneous mutants. The mutants showing the highest growth in the presence of Ga were selected for further characterization. These mutants showed 4- to 12-fold higher Ga minimal inhibitory growth concentrations and a greater than 8-fold increase in the minimum biofilm eliminating Ga concentration. Both types of mutants produced Ga resistant biofilms whereas the formation of wild-type biofilms was strongly inhibited by Ga. The gene interrupted in the transposon mutant was hitA, which encodes a periplasmic iron binding protein that delivers Fe³âº to the HitB iron permease; complementation of the mutant with the hitA gene restored the Ga sensitivity. This hitA mutant showed a 14-fold decrease in Ga internalization versus the wild-type strain, indicating that the HitAB system is also involved in the Ga uptake. Ga uptake in the spontaneous mutant was also lower, although no mutations were found in the hitAB genes. Instead, this mutant harbored 64 non-silent mutations in several genes including those of the phenazine pyocyanin biosynthesis. The spontaneous mutant produced 2-fold higher pyocyanin basal levels than the wild-type; the addition of this phenazine to wild-type cultures protected them from the Ga bacteriostatic effect. The present data indicate that mutations affecting Ga transport and probably pyocyanin biosynthesis enable cells to develop resistance to Ga.


Asunto(s)
Farmacorresistencia Bacteriana , Galio/metabolismo , Galio/toxicidad , Mutación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Elementos Transponibles de ADN , Eliminación de Gen , Prueba de Complementación Genética , Pruebas de Sensibilidad Microbiana , Mutagénesis Insercional , Pseudomonas aeruginosa/fisiología
14.
Cell Transplant ; 32: 9636897231177357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37291807

RESUMEN

Obesity has been linked to cognitive impairment through systemic low-grade inflammation. High fat and sugar diets (HFSDs) also induce systemic inflammation, either by induced Toll-like receptor 4 response, or by causing dysbiosis. This study aimed to evaluate the effect of symbiotics supplementation on spatial and working memory, butyrate concentration, neurogenesis, and electrophysiological recovery of HFSD-fed rats. In a first experiment, Sprague-Dawley male rats were given HFSD for 10 weeks, after which they were randomized into 2 groups (n = 10 per group): water (control), or Enterococcus faecium + inulin (symbiotic) administration, for 5 weeks. In the fifth week, spatial and working memory was analyzed through the Morris Water Maze (MWM) and Eight-Arm Radial Maze (RAM) tests, respectively, with 1 week apart between tests. At the end of the study, butyrate levels from feces and neurogenesis at hippocampus were determined. In a second experiment with similar characteristics, the hippocampus was extracted to perform electrophysiological studies. Symbiotic-supplemented rats showed a significantly better memory, butyrate concentrations, and neurogenesis. This group also presented an increased firing frequency in hippocampal neurons [and a larger N-methyl-d-aspartate (NMDA)/α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) current ratio] suggesting an increase in NMDA receptors, which in turn is associated with an enhancement in long-term potentiation and synaptic plasticity. Therefore, our results suggest that symbiotics could restore obesity-related memory impairment and promote synaptic plasticity.


Asunto(s)
Agave , Memoria Espacial , Ratas , Animales , Masculino , Agave/metabolismo , Inulina/farmacología , Inulina/uso terapéutico , Ratas Sprague-Dawley , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Aprendizaje por Laberinto/fisiología , Obesidad/terapia , Suplementos Dietéticos , Inflamación
15.
Mol Microbiol ; 82(3): 578-90, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21895798

RESUMEN

In Saccharomyces cerevisiae, the first committed step in the lysine (Lys) biosynthetic pathway is catalysed by the Lys20 and Lys21 homocitrate synthase (HCS) isoforms. Overexpression of Lys20 resulted in eightfold increased Lys, as well as 2-oxoglutarate pools, which were not attained by overexpressing Lys21 or other pathway enzymes (Lys1, Lys9 or Lys12). A metabolic control analysis-based strategy, by gradually and individually manipulating the Lys20 and Lys21 activities demonstrated that the cooperative and strongly feedback-inhibited Lys21 isoform exerted low control of the pathway flux whereas most of the control resided on the non-cooperative and weakly feedback-inhibited Lys20 isoform. Therefore, the higher control of Lys20 over the Lys flux represents an exception to the dogma of higher pathway control by the strongest feedback-inhibited enzyme and points out to multi-site engineering (HCS isoforms and supply of precursors) to increase Lys synthesis.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Lisina/biosíntesis , Oxo-Ácido-Liasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Vías Biosintéticas/genética , Regulación Fúngica de la Expresión Génica , Isoenzimas/metabolismo , Modelos Biológicos
16.
Microbiol Res ; 260: 127045, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35525167

RESUMEN

Tepache is a native beverage from Mexico, which is usually elaborated with pineapple shells, brown cane sugar and is fermented naturally. Beneficial health effects have been attributed to its consumption; however, the total ecosystem of this beverage including chemicals (substrates for microbial growth, prebiotics, etc) and microbiota (probiotics), and potential functionality had not been studied. In this work, the analysis of the tepache beverage for its physicochemical characteristics, as well as its structure of microbial communities and the predictive metabolic functionalities was carried out. Chemical characterization was performed via enzymatic and GC-MS methods. The bacterial and fungal communities were identified by using 16S rRNA and ITS metabarcoding through Illumina MiSeq 2 × 300. The metabolic potential was predicted by in silico tools. This research showed that after 72 h of fermentation, the tepache physicochemical characteristics shifted to 9.5 Brix degrees and acidic pH. The content of ethanol, acetic and L-lactic acid increased significantly from 0.83 ± 0.02 to 3.39 ± 0.18 g/L, from 0.38 ± 0.04 to 0.54 ± 0.04 g/L and from 1.42 ± 0.75 to 8.77 ± 0.34 g/L, respectively. While, the total sugars was decreased from 123.43 ± 2.01 to 84.70 ± 2.34 g/L. The microbial diversity analysis showed a higher richness of bacterial communities and increased fungal evenness at the end of fermentation. At 72 h of fermentation the microbial community was dominated by Lactobacillus, Leuconostoc, Acetobacter and Lactococcus bacterial genera. As for the fungal community, Saccharomyces, Gibberella, Zygosaccharomyces, Candida, Meyerozyma, Talaromyces, Epicoccum and Kabatiella were found to be in most abundance. The predicted functionality profile evidenced a close-fitting relationship between fungal communities at 0 h with the bacterial communities at 72 h of fermentation. The metabolic potential showed that glycolysis and citrate cycle metabolism were predominant for fungal community, while glycolysis, fructose and tricarboxylic acid metabolism were more representative for the bacterial core. Tepache fermentation mainly occurred at two temporal successions. First, a lactic acid and ethanol fermentation dominated by lactic acid bacteria and yeast, and then an increase in acetogenic bacteria. This study revealed for the first time the physicochemical, microbiological changes and predictive functionality that are involved during tepache fermentation. These findings contributed to the knowledge of important microbial sources and could be essential to future efforts in manufacturing process. In addition, this work could help to analyze the health benefits that are empirically attributed to it by consumers.


Asunto(s)
Bebidas Fermentadas , Microbiota , Bacterias , Bebidas/microbiología , Etanol/metabolismo , Fermentación , México , ARN Ribosómico 16S/genética
17.
Front Microbiol ; 13: 949272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118191

RESUMEN

A challenge in the study of gastrointestinal microbiota (GITm) is the validation of the genomic data with metabolic studies of the microbial communities to understand how the microbial networks work during health and sickness. To gain insights into the metabolism of the GITm, feces from healthy and sick rats with cancer were inoculated in a defined synthetic medium directed for anaerobic prokaryote growth (INC-07 medium). Significant differences between cultures of healthy and sick individuals were found: 1) the consumption of the carbon source and the enzyme activity involved in their catabolism (e.g., sucrase, lactase, lipases, aminotransferases, and dehydrogenases); 2) higher excretion of acetic, propionic, isobutyric, butyric, valeric, and isovaleric acids; 3) methane production; 4) ability to form biofilms; and 5) up to 500 amplicon sequencing variants (ASVs) identified showed different diversity and abundance. Moreover, the bowel inflammation induced by cancer triggered oxidative stress, which correlated with deficient antioxidant machinery (e.g., NADPH-producing enzymes) determined in the GITm cultures from sick individuals in comparison with those from control individuals. Altogether, the data suggested that to preserve the microbial network between bacteria and methanogenic archaea, a complete oxidation of the carbon source may be essential for healthy microbiota. The correlation of 16S rRNA gene metabarcoding between cultures and feces, as well as metabolomic data found in cultures, suggest that INC-07 medium may be a useful tool to understand the metabolism of microbiota under gut conditions.

18.
J Bioenerg Biomembr ; 43(5): 519-30, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21833603

RESUMEN

Ethanol is one of the most efficient carbon sources for Euglena gracilis. Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (Δψ) after the addition of ethanol. However, upon the addition of acetaldehyde no Δψ was formed. Furthermore, acetaldehyde collapsed Δψ generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on Δψ, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse Δψ. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64-6.5 mM for ethanol, and 0.16-0.88 mM for NAD+, while the ALDH Km values were 1.7-5.3 µM for acetaldehyde and 33-47 µM for NAD+. These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism.


Asunto(s)
Etanol/metabolismo , Euglena gracilis/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas Protozoarias/metabolismo , Potencial de la Membrana Mitocondrial/fisiología
19.
FEBS J ; 288(13): 4064-4080, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33400378

RESUMEN

Under physiological conditions, cells produce low basal levels of reactive oxygen species (ROS); however, in pathologic conditions ROS production increases dramatically, generating high concentrations of toxic unsaturated aldehydes. Aldehyde dehydrogenases (ALDHs) are responsible for detoxification of these aldehydes protecting the cell. Due to the physiological relevance of these enzymes, it is important to design strategies to modulate their activity. It was previously reported that omeprazole activation of ALDH1A1 protected Escherichia coli cells overexpressing this enzyme, from oxidative stress generated by H2 O2 . In this work, omeprazole cell protection potential was evaluated in eukaryotic cells. AS-30D cell or hepatocyte suspensions were subjected to a treatment with omeprazole and exposure to light (that is required to activate omeprazole in the active site of ALDH) and then exposed to H2 O2 . Cells showed viability similar to control cells, total activity of ALDH was preserved, while cell levels of lipid aldehydes and oxidative stress markers were maintained low. Cell protection by omeprazole was avoided by inhibition of ALDHs with disulfiram, revealing the key role of these enzymes in the protection. Additionally, omeprazole also preserved ALDH2 (mitochondrial isoform) activity, diminishing lipid aldehyde levels and oxidative stress in this organelle, protecting mitochondrial respiration and transmembrane potential formation capacity, from the stress generated by H2 O2 . These results highlight the important role of ALDHs as part of the antioxidant system of the cell, since if the activity of these enzymes decreases under stress conditions, the viability of the cell is compromised.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Omeprazol/farmacología , Estrés Oxidativo/efectos de los fármacos , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/efectos de la radiación , Femenino , Humanos , Peróxido de Hidrógeno/farmacología , Luz , Oxidantes/farmacología , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
20.
ISME J ; 15(8): 2379-2389, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33654265

RESUMEN

Pseudomonas aeruginosa is a primary bacterial model to study cooperative behaviors because it yields exoproducts such as siderophores and exoproteases that act as public goods and can be exploited by selfish nonproducers behaving as social cheaters. Iron-limited growth medium, mainly casamino acids medium supplemented with transferrin, is typically used to isolate and study nonproducer mutants of the siderophore pyoverdine. However, using a protein as the iron chelator could inadvertently select mutants unable to produce exoproteases, since these enzymes can degrade the transferrin to facilitate iron release. Here we investigated the evolutionary dynamics of pyoverdine and exoprotease production in media in which iron was limited by using either transferrin or a cation chelating resin. We show that concomitant loss of pyoverdine and exoprotease production readily develops in media containing transferrin, whereas only pyoverdine loss emerges in medium treated with the resin. Characterization of exoprotease- and pyoverdine-less mutants revealed loss in motility, different mutations, and large genome deletions (13-33 kb) including Quorum Sensing (lasR, rsal, and lasI) and flagellar genes. Our work shows that using transferrin as an iron chelator imposes simultaneous selective pressure for the loss of pyoverdine and exoprotease production. The unintended effect of transferrin uncovered by our experiments can help to inform the design of similar studies.


Asunto(s)
Hierro , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Exopeptidasas , Hierro/metabolismo , Oligopéptidos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sideróforos , Transferrina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA