Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 43(21): 10200-12, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26319017

RESUMEN

The α, ß and γ isoforms of mammalian heterochromatin protein 1 (HP1) selectively bind to methylated lysine 9 of histone H3 via their chromodomains. Although the phenotypes of HP1-knockout mice are distinct for each isoform, the molecular mechanisms underlying HP1 isoform-specific function remain elusive. In the present study, we found that in contrast to HP1α, HP1γ could not bind tri-methylated H3 lysine 9 in a reconstituted tetra-nucleosomes when the nucleosomes were in an uncompacted state. The hinge region connecting HP1's chromodomain and chromoshadow domain contributed to the distinct recognition of the nucleosomes by HP1α and HP1γ. HP1γ, but not HP1α, was strongly enhanced in selective binding to tri-methylated lysine 9 in histone H3 by the addition of Mg(2+) or linker histone H1, which are known to induce compaction of nucleosomes. We propose that this novel property of HP1γ recognition of lysine 9 in the histone H3 tail in different nucleosome structures plays a role in reading the histone code.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Homólogo de la Proteína Chromobox 5 , Histonas/química , Humanos , Lisina/metabolismo , Magnesio/química , Metilación , Unión Proteica , Isoformas de Proteínas/metabolismo , Multimerización de Proteína
2.
J Biomol Struct Dyn ; : 1-10, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279925

RESUMEN

Human uracil DNA glycosylase (hUNG), a crucial player in the initiation of the base excision repair pathway, is susceptible to alterations in function and conformation induced by the accumulation of toxic metals. Despite the recognized impact of toxic metals on DNA repair enzymes, there exists a notable deficiency in theoretical investigations addressing this phenomenon. This study investigates the impact of toxic heavy metal ions, Pb(II) and Ni(II), on the stability of hUNG through molecular dynamics (MD) simulations. The initial analysis involved the identification of key cavities in the hUNG enzyme. Notably, the active site cavity emerged as a promising site for ligand binding. Subsequently, AutoDockTools software was employed to dock Pb(II) and Ni(II) onto the identified cavities, followed by extensive MD simulations. The MD analysis, encompassing parameters such as root mean square deviation, radius of gyration, solvent accessible surface area, hydrogen bond variations, Ramachandran plot, principal component analysis, and root mean square fluctuations, collectively revealed distinct alterations in the behavior of the enzyme upon complexation with Pb(II) and Ni(II). Interestingly, the enzyme exhibited enhanced structural stability, reduced flexibility, and modified hydrogen bonding patterns in the presence of these toxic metal ions. The observed limitation in structural flexibility implies a more rigid and stable conformation when the enzyme complex with Pb(II) and Ni(II) compared to its free form. This structural alteration may lead to a potential reduction in enzymatic activity, suggesting that toxic metal ions influence the functional dynamics of hUNG. These computational findings offer valuable insights into the molecular interactions between metal ions and enzymes.Communicated by Ramaswamy H. Sarma.

3.
J Ethnopharmacol ; 296: 115511, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35781007

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Carica papaya L., a common fruit crop of the family Caricaceae and its leaf juice/extract is a traditionally commended preparation against dengue and other thrombocytopenic diseases by many Asian countries. AIM OF THE STUDY: The present study posits the potential cellular mechanisms of platelet augmentation activity of mature leaf juice of Sri Lankan wild-type Carica papaya. MATERIALS AND METHODS: C. papaya leaf juice prepared from different cultivar types, maturity of the leaf, agro-climatic region, and preparation methods were orally administered to hydroxyurea-induced thrombocytopenic rats at 0.72 ml/100 g BW dosage to investigate the most potent platelet increasing preparation. The papaya juice doses; low dose (LD-0.18 ml/100 g BW), human equivalent dose (HED-0.36 ml/100 g BW), and high dose (HD-0.72 ml/100 g BW), were administered to thrombocytopenic rats (N = 6/group) daily for three consecutive days and post-treatment plasma levels of interleukin 6 (IL-6), thrombopoietin (TPO), and platelet-activating factor (PAF) were quantified using specific rat ELISA kits. The mature leaf juice of C. papaya induced IL-6 secretion from bone marrow cell (BMC) cultures was quantified using ELISA. The ability of papaya juice to protect the platelet membrane, from the damage caused by the lytic agent was analyzed in vitro using the lactate dehydrogenase (LDH) assay. The effect of the mature leaf juice of C. papaya on secondary hemostasis was investigated using blood coagulation and clot hydrolyzing activity. RESULTS: The comparative analysis revealed that the platelet increasing activity of C. papaya leaf did not significantly differ among different types of cultivar, maturity of the leaf, agro-climatic regions and preparation methods (p > 0.05). Both TPO and PAF levels in thrombocytopenic rats diminished when treated with all three doses of the mature leaf juice of C. papaya (p < 0.05), yet IL-6 plasma level was unaltered (p > 0.05). Nevertheless, ex vivo treatment of the mature leaf juice of C. papaya had significantly enhanced IL-6 levels of rat BMC cultures (p < 0.05). Pre-treatment of platelets with the mature leaf juice of C. papaya at different concentrations significantly inhibited LDH leakage from platelets and may have reduced the membrane damage caused by the lytic agent (p < 0.05). Treatment of mature leaf juice of C. papaya also significantly reduced blood clotting time through the extrinsic pathway of the blood coagulation cascade (p < 0.05). Further, prolonged incubation of the plasma clot with different concentrations of the papaya leaf juice revealed dose-dependent hydrolysis of the blood clot, indicating fibrinolysis activity. CONCLUSIONS: The current study exceeded the traditional medicinal claims, and scientifically affirmed the platelet augmentation activity of mature leaf juice of C. papaya. The mechanistic rationale tested herein explicated that the platelet augmentation activity of the papaya leaf juice can be partially attributed to the stimulation of bone marrow megakaryocytes via modulating thrombopoietic cytokines TPO and IL-6, and by inhibiting the secretion of PAF, while reducing the peripheral platelet destruction by stabilizing the platelet membrane. Further, mature leaf juice of C. papaya imparted both pro-coagulation and fibrinolysis activity of secondary hemostasis endorsing its potential against thrombocytopenia.


Asunto(s)
Carica , Extractos Vegetales , Trombocitopenia , Animales , Humanos , Interleucina-6/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Ratas , Sri Lanka , Trombocitopenia/metabolismo , Trombocitopenia/terapia
4.
Artículo en Inglés | MEDLINE | ID: mdl-31781278

RESUMEN

Herbal remedies have been practiced by humans over centuries and therefore possess time-proven safety. However, it is imperative to evaluate the toxic effects of herbal medicine to confirm their safety, particularly when developing therapeutic leads. Use of laboratory animals such as rats, mice, and rabbits was considered as gold standard in herbal toxicity assessments. However, in the last few decades, the ethical consideration of using higher vertebrates for toxicity testing has become more contentious. Thus, possible alternative models entailing lower vertebrates such as zebrafish were introduced. The zebrafish embryotoxicity model is at the forefront of toxicology assessment due to the transparent nature of embryos, low cost, short cycle, higher fecundity, and genetic redundancy to the humans. Recently, its application has been extended to herbal toxicology. The present review intends to provide a comprehensive assembly of studies that applied the zebrafish embryo model for the assessment of herbal toxicity. A systematic literature survey was carried out in popular scientific databases. The literature search identified a total of 1014 articles in PubMed = 12, Scopus SciVerse® = 623, and Google Scholar = 1000. After screening, 25 articles were included in this review, and they were categorized into three groups in which the zebrafish embryotoxicity assay has been applied to investigate the toxicity of (1) polyherbal formulae/medical prescription (2 full texts), (2) crude extracts (12 full texts), and (3) phytocompounds/isolated constituents (11 full texts). These studies have investigated the toxicity of 6 polyherbal formulae, 16 crude extracts, and more than 30 phytocompounds/isolated constituents using the zebrafish embryotoxicity model. Moreover, this model has explicated the teratogenic effects and specific organ toxicities such as the kidney, heart, and liver. Furthermore, in some studies, the molecular mechanisms underlying the toxicity of herbal medicine have been elucidated. This comprehensive collection of scientific data solidifies the zebrafish embryo model as an effective model system for studying toxicological effects of a broad spectrum of herbal remedies. Henceforth, it provides a novel insight into the toxicity assessment of herbal medicine.

5.
Biomed Res Int ; 2019: 1369682, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31687377

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) provides acquired immunity in microorganisms against exogenous DNA that may hinder the survival of the organism. Pioneering work by Doudna and Charpentier in 2012 resulted in the creation of the CRISPR/Cas9 genome editing tool on the basis of this concept. The aim of this was to create a rapid, efficient, and versatile genome-editing tool to facilitate genetic manipulation. The mechanism relies on two components: the RNA guide which acts as a sentinel and a Cas protein complex which functions as a highly precise molecular knife. The guide RNA can be modified to match a DNA sequence of interest in the cell and accordingly be used to rectify mutations that may otherwise cause disease. Within a few years following the development of the CRISPR/Cas9 tool, its usage has become ubiquitous. Its influence extends into many fields of biological sciences from biotechnology and biochemistry to molecular biology and biomedical sciences. The following review aims at shedding some light on to the applications of the CRISPR/Cas9 tool in the field of biomedical sciences, particularly gene therapy. An insight with relation to a few of the many diseases that are being tackled with the aid of the CRISPR/Cas9 mechanism and the trends, successes, and challenges of this application as a gene therapy are discussed in this review.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma/genética , Animales , Biotecnología/métodos , Edición Génica/métodos , Genómica/métodos , Humanos , ARN Guía de Kinetoplastida/genética
6.
J Trop Med ; 2018: 2048530, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29849664

RESUMEN

Euphorbia hirta commonly known as Tawa-Tawa is a plant used in folklore medicine in the Philippines for the treatment of dengue. Though, E. hirta has been extensively investigated for numerous bioactivities, limited studies have been conducted on the antidengue activity. Thus, the present study provides a comprehensive review of studies conducted on the antidengue activity of E. hirta. A systematic literature survey was carried out in scientific databases, PubMed®, Scopus, and Google Scholar, for research carried on the antidengue activity of E. hirta. The literature search identified a total of 867 articles: databases PubMed = 6, Scopus SciVerse® = 423, and Google Scholar = 437; one additional article was identified by searching reference lists. Eight full papers were entitled to the review; out of those, two studies focused on ethnobotanical surveys, three on animal experiments, one on human trial, and two on in vitro antiviral activities, and one was computational study. The available evidence conclusively demonstrates the potential of E. hirta against dengue as it holds significant antiviral and platelet increasing activities. However, the number of studies conducted to validate its antidengue activity was found to be inadequate. Hence, well-controlled clinical trials and contemporary pharmacological approaches including activity guided fractionation and elucidation of the mode of action are encouraged to establish the use of E. hirta for dengue.

7.
J Toxicol ; 2018: 4182694, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687404

RESUMEN

Pesguard FG161™, a mixture of d-tetramethrin and cyphenothrin (1:3 ratio), is extensively used to achieve rapid control of adult dengue vector, Aedes aegypti, during the disease outbreaks. Both d-tetramethrin and cyphenothrin are synthetic pyrethroids that are known to have adverse effects on non-mammalian organisms such as fish. The present study intended to use zebrafish embryo toxicity model to investigate the toxic effect of the above binary mixture on fish. Particularly, zebrafish embryo toxicity model provides an alternative to acute fish toxicity tests in terms of animal welfare perspective as the embryos are not considered live until 5 days after fertilization. The zebrafish embryos (2 hrs after fertilization) were exposed to a binary mixture of pyrethroids at different concentrations (d-tetramethrin: 0.01 - 1.20 µmolL-1 and cyphenothrin: 0.03 - 3.20 µmolL-1) for 24, 48, and 72 hrs at room temperature (26°C) according to the OECD guideline no. 236. Percentage mortality of embryos were calculated by observing the lethal endpoints and LC50 values were calculated for each time interval employing the probit analysis. This binary mixture was highly toxic to zebrafish embryos and was found to be concentration and time dependent. LC50 values at 24 hrs (d-tet: 0.58 µmolL-1, cyp: 1.74 µmolL-1) were significantly reduced in 48 hrs (d-tet: 0.11 µmolL-1, cyp: 0.33 µmolL-1) and 72 hrs (d-tet: 0.03 µmolL-1, cyp: 0.09 µmolL-1). Coagulation of embryos was the most common lethal effect observed and lack of somite formation and lack of heartbeat were also observed. The present study revealed that the binary mixture is highly toxic to zebrafish embryos even when based on nominal concentrations. Hence, extensive use of these pesticides could be detrimental to fish population and integrated vector control methods which involve the minimum use of insecticides are recommended. Further, this study highlights the applicability of zebrafish embryo toxicity model as an alternative method to investigate the toxicity of pyrethroids to fish.

8.
Eur J Pharm Biopharm ; 128: 18-26, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29625162

RESUMEN

This study was focused on developing a drug carrier system composed of a polymer containing hydroxyapatite (HAp) shell and a magnetic core of iron oxide nanoparticles. Doxorubicin and/or curcumin were loaded into the carrier via a simple diffusion deposition approach, with encapsulation efficiencies (EE) for curcumin and doxorubicin of 93.03 ±â€¯0.3% and 97.37 ±â€¯0.12% respectively. The co-loading of curcumin and doxorubicin led to a total EE of 76.02 ±â€¯0.48%. Release studies were carried out at pH 7.4 and 5.3, and revealed a greater extent of release at pH 5.3, showing the formulations to have potential applications in tumor microenvironments. Cytotoxicity assays, fluorescence imaging and flow cytometry demonstrated that the formulations could effectively inhibit the growth of MCF-7 (breast) and HEpG2 (liver) cancer cells, being more potent than the free drug molecules both in terms of dose and duration of action. Additionally, hemolysis tests and cytotoxicity evaluations determined the drug-loaded carriers to be non-toxic towards non-cancerous cells. These formulations thus have great potential in the development of new cancer therapeutics.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/química , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Curcumina/administración & dosificación , Doxorrubicina/administración & dosificación , Durapatita/química , Femenino , Compuestos Férricos/química , Citometría de Flujo , Hemólisis/efectos de los fármacos , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Células MCF-7 , Masculino , Nanopartículas/química , Imagen Óptica , Polímeros/química , Ratas Wistar
9.
J Mol Biol ; 425(1): 54-70, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23142645

RESUMEN

The majority of the genome in eukaryotes is packaged into transcriptionally inactive chromatin. Heterochromatin protein 1 (HP1) is a major player in the establishment and maintenance of heterochromatin. HP1 specifically recognizes a methylated lysine residue at position 9 in histone H3 through its N-terminal chromo domain (CD). To elucidate the binding properties of HP1α to nucleosomes in vitro, we reconstituted nucleosomes containing histone H3 trimethylated at lysine 9. HP1α exhibited high-affinity binding to nucleosomes containing methylated histone H3 in a nucleosome core-number-dependent manner. The hinge region (HR) connecting the CD and C-terminal chromoshadow domain (CSD), and the CSD contributed to the selective binding of HP1α to histone H3 with trimethylated lysine 9 through weak DNA binding and by suppressing the DNA binding, respectively. We propose that not only the specific recognition of lysine 9 methylation of histone H3 by the CD but also the HR and the CSD cooperatively contribute to the selective binding of HP1α to histone H3 lysine 9 methylated nucleosomes.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Secuencia de Aminoácidos , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Heterocromatina/genética , Histonas/genética , Humanos , Lisina/metabolismo , Metilación , Modelos Moleculares , Neurospora crassa/enzimología , Neurospora crassa/genética , Nucleosomas/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión , Eliminación de Secuencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA