Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
RNA Biol ; 19(1): 916-927, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35833713

RESUMEN

Transcriptional pausing occurs across the bacterial genome but the importance of this mechanism is still poorly understood. Only few pauses were observed during the previous decades, leaving an important gap in understanding transcription mechanisms. Using the well-known Escherichia coli hisL and trpL pause sites as models, we describe here the relation of pause sites with upstream RNA structures suspected to stabilize pausing. We find that the transcription factor NusA influences the pause half-life at leuL, pheL and thrL pause sites. Using a mutagenesis approach, we observe that transcriptional pausing is affected in all tested pause sites, suggesting that the upstream RNA sequence is important for transcriptional pausing. Compensatory mutations assessing the presence of RNA hairpins did not yield clear conclusions, indicating that complex RNA structures or transcriptional features may be playing a role in pausing. Moreover, using a bioinformatic approach, we explored the relation between a DNA consensus sequence important for pausing and putative hairpins among thousands of pause sites in E. coli. We identified 2125 sites presenting hairpin-dependent transcriptional pausing without consensus sequence, suggesting that this mechanism is widespread across E. coli. This study paves the way to understand the role of RNA structures in transcriptional pausing.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Conformación de Ácido Nucleico , ARN/genética , ARN Bacteriano/química , ARN Bacteriano/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética
2.
RNA Biol ; 18(sup2): 699-710, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34612173

RESUMEN

Clostridioides difficile is the main cause of nosocomial antibiotic-associated diarrhoea. There is a need for new antimicrobials to tackle this pathogen. Guanine riboswitches have been proposed as promising new antimicrobial targets, but experimental evidence of their importance in C. difficile is missing. The genome of C. difficile encodes four distinct guanine riboswitches, each controlling a single gene involved in purine metabolism and transport. One of them controls the expression of guaA, encoding a guanosine monophosphate (GMP) synthase. Here, using in-line probing and GusA reporter assays, we show that these riboswitches are functional in C. difficile and cause premature transcription termination upon binding of guanine. All riboswitches exhibit a high affinity for guanine characterized by Kd values in the low nanomolar range. Xanthine and guanosine also bind the guanine riboswitches, although with less affinity. Inactivating the GMP synthase (guaA) in C. difficile strain 630 led to cell death in minimal growth conditions, but not in rich medium. Importantly, the capacity of a guaA mutant to colonize the mouse gut was significantly reduced. Together, these results demonstrate the importance of de novo GMP biosynthesis in C. difficile during infection, suggesting that targeting guanine riboswitches with analogues could be a viable therapeutic strategy.


Asunto(s)
Ligasas de Carbono-Nitrógeno/genética , Clostridioides difficile/fisiología , Infecciones por Clostridium/microbiología , Regulación Bacteriana de la Expresión Génica , Riboswitch , Animales , Ligasas de Carbono-Nitrógeno/metabolismo , Genoma Bacteriano , Genómica/métodos , Guanina , Ratones , Viabilidad Microbiana/genética , Mutación , Transcripción Genética , Virulencia/genética
3.
mBio ; : e0087324, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207109

RESUMEN

Microorganisms with simplified genomes represent interesting cell chassis for systems and synthetic biology. However, genome reduction can lead to undesired traits, such as decreased growth rate and metabolic imbalances. To investigate the impact of genome reduction on Escherichia coli strain DGF-298, a strain in which ~ 36% of the genome has been removed, we reconstructed a strain-specific metabolic model (iAC1061), investigated the regulation of gene expression using iModulon-based transcriptome analysis, and performed adaptive laboratory evolution to let the strain correct potential imbalances that arose during its simplification. The model notably predicted that the removal of all three key pathways for glycolaldehyde disposal in this microorganism would lead to a metabolic bottleneck through folate starvation. Glycolaldehyde is also known to cause self-generation of reactive oxygen species, as evidenced by the increased expression of oxidative stress resistance genes in the SoxS iModulon. The reintroduction of the aldA gene, responsible for one native glycolaldehyde disposal route, alleviated the constitutive oxidative stress response. Our results suggest that systems-level approaches and adaptive laboratory evolution have additive benefits when trying to repair and optimize genome-engineered strains. IMPORTANCE: Genomic streamlining can be employed in model organisms to reduce complexity and enhance strain predictability. One of the most striking examples is the bacterial strain Escherichia coli DGF-298, notable for having over one-third of its genome deleted. However, such extensive genome modifications raise the question of how similar this simplified cell remains when compared with its parent, and what are the possible unintended consequences of this simplification. In this study, we used metabolic modeling along with iModulon-based transcriptomic analysis in different growth conditions to assess the impact of genome reduction on metabolism and gene regulation. We observed little impact of genomic reduction on the regulatory network of E. coli DGF-298 and identified a potential metabolic bottleneck leading to the constitutive activity of the SoxS iModulon. We then leveraged the model's predictions to successfully restore SoxS activity to the basal level.

4.
PLoS One ; 18(4): e0283990, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37040373

RESUMEN

Transposon-insertion sequencing (TIS) methods couple high density transposon mutagenesis with next-generation sequencing and are commonly used to identify essential or important genes in bacteria. However, this approach can be work-intensive and sometimes expensive depending on the selected protocol. The difficulty to process a high number of samples in parallel using standard TIS protocols often restricts the number of replicates that can be performed and limits the deployment of this technique to large-scale projects studying gene essentiality in various strains or growth conditions. Here, we report the development of a robust and inexpensive High-Throughput Transposon Mutagenesis (HTTM) protocol and validate the method using Escherichia coli strain BW25113, the parental strain of the KEIO collection. HTTM reliably provides high insertion densities with an average of one transposon every ≤20bp along with impressive reproducibility (Spearman correlation coefficients >0.94). A detailed protocol is available at protocol.io and a graphical version is also included with this article.


Asunto(s)
Elementos Transponibles de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Reproducibilidad de los Resultados , Mutagénesis , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Investigación , Escherichia coli/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA