Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Immunol ; 202(11): 3256-3266, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31010852

RESUMEN

Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate ß-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1ß) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.


Asunto(s)
Candida albicans/fisiología , Candidiasis/metabolismo , Membrana Celular/metabolismo , Proteína Kangai-1/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Fagosomas/metabolismo , Animales , Candidiasis/inmunología , Línea Celular , Predisposición Genética a la Enfermedad , Humanos , Inmunidad Celular , Interleucina-1beta/metabolismo , Proteína Kangai-1/genética , Lectinas Tipo C/genética , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
2.
Cell Mol Immunol ; 20(5): 448-474, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36928371

RESUMEN

Atopic dermatitis (AD) is the most common inflammatory skin disease, and it is considered a complex and heterogeneous condition. Different phenotypes of AD, defined according to the patient age at onset, race, and ethnic background; disease duration; and other disease characteristics, have been recently described, underlying the need for a personalized treatment approach. Recent advancements in understanding AD pathogenesis resulted in a real translational revolution and led to the exponential expansion of the therapeutic pipeline. The study of biomarkers in clinical studies of emerging treatments is helping clarify the role of each cytokine and immune pathway in AD and will allow addressing the unique immune fingerprints of each AD subset. Personalized medicine will be the ultimate goal of this targeted translational research. In this review, we discuss the changes in the concepts of both the pathogenesis of and treatment approach to AD, highlight the scientific rationale behind each targeted treatment and report the most recent clinical efficacy data.


Asunto(s)
Dermatitis Atópica , Humanos , Dermatitis Atópica/terapia , Citocinas , Biomarcadores , Medicina de Precisión , Fenotipo
3.
mBio ; 11(3)2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398316

RESUMEN

Invasive fungal infections constitute a lethal threat, with patient mortality as high as 90%. The incidence of invasive fungal infections is increasing, especially in the setting of patients receiving immunomodulatory agents, chemotherapy, or immunosuppressive medications following solid-organ or bone marrow transplantation. In addition, inhibitors of spleen tyrosine kinase (Syk) have been recently developed for the treatment of patients with refractory autoimmune and hematologic indications. Neutrophils are the initial innate cellular responders to many types of pathogens, including invasive fungi. A central process governing neutrophil recognition of fungi is through lectin binding receptors, many of which rely on Syk for cellular activation. We previously demonstrated that Syk activation is essential for cellular activation, phagosomal maturation, and elimination of phagocytosed fungal pathogens in macrophages. Here, we used combined genetic and chemical inhibitor approaches to evaluate the importance of Syk in the response of neutrophils to Candida species. We took advantage of a Cas9-expressing neutrophil progenitor cell line to generate isogenic wild-type and Syk-deficient neutrophils. Syk-deficient neutrophils are unable to control the human pathogens Candida albicans, Candida glabrata, and Candida auris Neutrophil responses to Candida species, including the production of reactive oxygen species and of cytokines such as tumor necrosis factor alpha (TNF-α), the formation of neutrophil extracellular traps (NETs), phagocytosis, and neutrophil swarming, appear to be critically dependent on Syk. These results demonstrate an essential role for Syk in neutrophil responses to Candida species and raise concern for increased fungal infections with the development of Syk-modulating therapeutics.IMPORTANCE Neutrophils are recognized to represent significant immune cell mediators for the clearance and elimination of the human-pathogenic fungal pathogen Candida The sensing of fungi by innate cells is performed, in part, through lectin receptor recognition of cell wall components and downstream cellular activation by signaling components, including spleen tyrosine kinase (Syk). While the essential role of Syk in macrophages and dendritic cells is clear, there remains uncertainty with respect to its contribution in neutrophils. In this study, we demonstrated that Syk is critical for multiple cellular functions in neutrophils responding to major human-pathogenic Candida species. These data not only demonstrate the vital nature of Syk with respect to the control of fungi by neutrophils but also warn of the potential infectious complications arising from the recent clinical development of novel Syk inhibitors for hematologic and autoimmune disorders.


Asunto(s)
Candida/patogenicidad , Candidiasis/inmunología , Regulación de la Expresión Génica , Neutrófilos/inmunología , Quinasa Syk/metabolismo , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/microbiología , Candida/clasificación , Línea Celular , Citocinas/inmunología , Trampas Extracelulares/inmunología , Femenino , Masculino , Ratones , Neutrófilos/microbiología , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Quinasa Syk/genética
4.
Neurology ; 91(13): 597-610, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30185444

RESUMEN

OBJECTIVE: To present (1) justification for earmarking sleep medicine education as an essential component of all medical school curricula and (2) various avenues to incorporate sleep medicine exposure into medical school curricula through (primarily) neuroscience and neurology courses. METHODS: Per consensus of a team of leading neurology and sleep medicine educators, an evidence-based rationale for including sleep medicine across a 4-year medical school curriculum is presented along with suggested content, available/vetted resources, and formats for delivering sleep medicine education at various points and through various formats. RESULTS: Growing evidence has linked sleep disorders (e.g., sleep-disordered breathing, chronic insufficient sleep) as risk factors for several neurologic disorders. Medical educators in neurology/neuroscience are now strongly advocating for sleep medicine education in the context of neurology/neuroscience pre and post graduate medical education. Sleep medicine education is also a critical component of a proactive strategy to address physician wellness and burnout. The suggested curriculum proposes a sleep educational exposure time of 2-4 hours per year in the form of lectures, flipped-classroom sessions, clinical opportunities, and online educational tools that would result in a 200%-400% increase in the amount of sleep medicine exposure that US medical schools currently provide. The guidelines are accompanied by the recommendation for use of technological education, to facilitate more seamless curricular incorporation. CONCLUSION: Even in this era with limited flexibility to add content to an already packed medical school curriculum, incorporating sleep medicine exposure into the current medical school curriculum is both justified and feasible.


Asunto(s)
Curriculum , Educación de Pregrado en Medicina , Facultades de Medicina , Trastornos del Sueño-Vigilia , Agotamiento Profesional/prevención & control , Competencia Clínica , Práctica Clínica Basada en la Evidencia , Humanos , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/fisiopatología , Enfermedades del Sistema Nervioso/terapia , Neurología/educación , Neurociencias/educación , Trastornos del Sueño-Vigilia/diagnóstico , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/fisiopatología , Trastornos del Sueño-Vigilia/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA