Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38542162

RESUMEN

Recent evidence indicates that the SARS-CoV-2 spike protein affects mitochondria with a cell type-dependent outcome. We elucidate the effect of the SARS-CoV-2 receptor binding domain (RBD) on the mitochondrial network and cristae morphology, oxygen consumption, mitoROS production, and inflammatory cytokine expression in cultured human lung microvascular (HLMVECs), coronary artery endothelial (HCAECs), and bronchial epithelial cells (HBECs). Live Mito Orange staining, STED microscopy, and Fiji MiNa analysis were used for mitochondrial cristae and network morphometry; an Agilent XFp analyser for mitochondrial/glycolytic activity; MitoSOX fluorescence for mitochondrial ROS; and qRT-PCR plus Luminex for cytokines. HLMVEC exposure to SARS-CoV-2 RBD resulted in the fragmentation of the mitochondrial network, mitochondrial swelling, increased cristae area, reduced cristae density, and suppressed mitochondrial oxygen consumption and glycolysis. No significant mitochondrial morphology or oxygen consumption changes were observed in HCAECs and HBECs. SARS-CoV-2 RBD induced mitoROS-mediated expression of cytokines GM-CSF and IL-1ß in all three investigated cell types, along with IL-8 expression in both endothelial cell types. The findings suggest mitochondrial ROS control SARS-CoV-2 RBD-induced inflammation in HLMVECs, HCAECs, and HBECs, with the mitochondria of HLMVECs being more sensitive to SARS-CoV-2 RBD.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Vasos Coronarios , Especies Reactivas de Oxígeno , SARS-CoV-2 , Células Epiteliales , Citocinas , Estrés Oxidativo
2.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37569690

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia worldwide, and it contributes up to 70% of cases. AD pathology involves abnormal amyloid beta (Aß) accumulation, and the link between the Aß1-42 structure and toxicity is of major interest. NMDA receptors (NMDAR) are thought to be essential in Aß-affected neurons, but the role of this receptor in glial impairment is still unclear. In addition, there is insufficient knowledge about the role of Aß species regarding mitochondrial redox states in neurons and glial cells, which may be critical in developing Aß-caused neurotoxicity. In this study, we investigated whether different Aß1-42 species-small oligomers, large oligomers, insoluble fibrils, and monomers-were capable of producing neurotoxic effects via microglial NMDAR activation and changes in mitochondrial redox states in primary rat brain cell cultures. Small Aß1-42 oligomers induced a concentration- and time-dependent increase in intracellular Ca2+ and necrotic microglial death. These changes were partially prevented by the NMDAR inhibitors MK801, memantine, and D-2-amino-5-phosphopentanoic acid (DAP5). Neither microglial intracellular Ca2+ nor viability was significantly affected by larger Aß1-42 species or monomers. In addition, the small Aß1-42 oligomers caused mitochondrial reactive oxygen species (mtROS)-mediated mitochondrial depolarization, glutamate release, and neuronal cell death. In microglia, the Aß1-42-induced mtROS overproduction was mediated by intracellular calcium ions and Aß-binding alcohol dehydrogenase (ABAD). The data suggest that the pharmacological targeting of microglial NMDAR and mtROS may be a promising strategy for AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratas , Animales , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedad de Alzheimer/metabolismo , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068877

RESUMEN

Cardio complications such as arrhythmias and myocardial damage are common in COVID-19 patients. SARS-CoV-2 interacts with the cardiovascular system primarily via the ACE2 receptor. Cardiomyocyte damage in SARS-CoV-2 infection may stem from inflammation, hypoxia-reoxygenation injury, and direct toxicity; however, the precise mechanisms are unclear. In this study, we simulated hypoxia-reoxygenation conditions commonly seen in SARS-CoV-2-infected patients and studied the impact of the SARS-CoV-2 spike protein RBD-epitope on primary rat cardiomyocytes to gain insight into the potential mechanisms underlying COVID-19-related cardiac complications. Cell metabolic activity was evaluated with PrestoBlueTM. Gene expression of proinflammatory markers was measured by qRT-PCR and their secretion was quantified by Luminex assay. Cardiomyocyte contractility was analysed using the Myocyter plugin of ImageJ. Mitochondrial respiration was determined through Seahorse Mito Stress Test. In hypoxia-reoxygenation conditions, treatment of the SARS-CoV-2 spike RBD-epitope reduced the metabolic activity of primary cardiomyocytes, upregulated Il1ß and Cxcl1 expression, and elevated GM-CSF and CCL2 cytokines secretion. Contraction time increased, while amplitude and beating frequency decreased. Acute treatment with a virus RBD-epitope inhibited mitochondrial respiration and lowered ATP production. Under ischaemia-reperfusion, the SARS-CoV-2 RBD-epitope induces cardiomyocyte injury linked to impaired mitochondrial activity.


Asunto(s)
COVID-19 , Humanos , Ratas , Animales , COVID-19/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Epítopos/metabolismo , Miocitos Cardíacos/metabolismo , Hipoxia/metabolismo , Rendimiento Físico Funcional
4.
Molecules ; 25(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150805

RESUMEN

Polyphenols play an important role on the health-promoting properties of humans. Plants belonging to Lamiaceae family are known as rich source of phenolic compounds. The current work aimed to evaluate the phenolic compounds, antioxidant, and anti-inflammatory activity of Elsholtzia ciliata (Thunb.) Hyl. ethanolic extracts from leaf, stem, flower, and whole herb. Twelve compounds were identified in ethanolic extracts using high-performance liquid chromatography (HPLC). The HPLC analysis revealed that chlorogenic acid, rosmarinic acid, and rutin were predominant compounds in ethanolicic extracts. Using HPLC-ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) post-column assay, avicularin, chlorogenic, and rosmarinic acids were identified as the predominant radical scavengers in all ethanolic extracts. All tested preparations significantly reduced the level of secretion of proinflammatory cytokines TNF-α, IL-6, and prostaglandin E2 induced by lipopolysaccharide treatment in mouse peritoneal macrophage cell culture. Stem and flower extracts were most efficient in reducing cytokine release, but leaf extract demonstrated stronger effect on prostaglandin E2 secretion. This is the first study exploring antioxidant efficiency by HPLC-ABTS post-column method and investigating anti-inflammatory activity of ethanolic extracts from E. ciliata different plant parts.


Asunto(s)
Lamiaceae/química , Fenoles/química , Fenoles/farmacología , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Mediadores de Inflamación/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Fenoles/aislamiento & purificación , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales/aislamiento & purificación
5.
BMC Complement Altern Med ; 18(1): 165, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29792194

RESUMEN

BACKGROUND: Propolis is multicomponent substance collected by honeybees from various plants. It is known for numerous biological effects and is commonly used as ethanolic extract because most of active substances of propolis are ethanol-soluble. However, water-based propolis extracts could be applied more safely, as this solvent is more biocompatible. On the other hand, water extracts has significantly smaller range and quantity of active compounds. The extraction power of water could be enhanced by adding co-solvent which increases both solubility and penetration of propolis compounds. However, variation of solvents results in different composition of active substances that might have distinct effects. The majority of biological effects of propolis are attributed to the antioxidant properties of its active compounds. Antioxidant effect might be a result of either direct scavenging of ROS or modulation of ROS producing organelle activity. Therefore, the aim of this study was to investigate and compare chemical composition, antioxidant properties and effects on mitochondrial respiration of aqueous (AqEP), polyethylene glycol-aqueous (Pg-AqEP) and ethanolic (EEP) propolis extracts. METHODS: Chemical composition of propolis extracts was determined using HPLC and Folin-Ciocalteu method. Ability to neutralize H2O2 and intracellular ROS concentration in C6 glioma cells were determined fluorometrically by using 10-acetyl-3,7-dihydroxyphenoxazine and 2',7'-dichlorofluorescein diacetate, respectively. Mitochondrial superoxide generation was assessed under fluorescent microscope by using MitoSOX Red. Oxygen uptake rates of mitochondria were recorded by high-resolution respirometer Oxygraph-2 k. RESULTS: Our data revealed that phenolic acids and aldehydes make up 40-42% of all extracted and identified compounds in AqEP and Pg-AqEP and only 16% in EEP. All preparations revealed similar antioxidant activity in cell culture medium but Pg-AqEP and EEP demonstrated better mitochondrial superoxide and total intracellular ROS decreasing properties. At higher concentrations, AqEP and EEP inhibited mitochondrial respiration, but Pg-AqEP had concentration-dependent mitochondria-uncoupling effect. CONCLUSIONS: Aqueous and non-aqueous propolis extracts differ by composition, but all of them possess antioxidant properties and neutralize H2O2 in solution at similar efficiency. However, both Pg-AqEP and EEP were more effective in decreasing intracellular and intramitochondrial ROS compared to AqEP. At higher concentrations, these preparations affect mitochondrial functions and change energy production in C6 cells.


Asunto(s)
Antioxidantes/farmacología , Mitocondrias/efectos de los fármacos , Própolis/farmacología , Animales , Antioxidantes/química , Abejas , Línea Celular Tumoral , Etanol/química , Peróxido de Hidrógeno , Polietilenglicoles/química , Própolis/química , Ratas
6.
Cells ; 12(9)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37174646

RESUMEN

Extracellular vesicles (EVs) are attractive anticancer drug delivery candidates as they confer several fundamental properties, such as low immunogenicity and the ability to cross biological barriers. Mesenchymal stem cells (MSCs) are convenient producers for high EV yields, and patient-derived adipose tissue MSC-EVs could serve as personalised carriers. However, MSC-EV applications raise critical concerns as their natural cargo can affect tumour progression in both inducing and suppressing ways. In this study, we investigated the effect of adipose tissue-derived mesenchymal stem cell EVs (ASC-EVs) on several glioblastoma (GBM) cell lines to define their applicability for anticancer therapies. ASC-EVs were isolated from a cell-conditioned medium and characterised by size and specific markers. The internalisation of fluorescently labelled ASC-EVs by human GBM cells HROG36, U87 MG, and T98G was evaluated by fluorescent microscopy. Changes in GBM cell proliferation after ASC-EV application were determined by the metabolic PrestoBlue assay. Expression alterations in genes responsible for cell adhesion, proliferation, migration, and angiogenesis were evaluated by quantitative real-time PCR. ASC-EV effects on tumour invasiveness and neoangiogenesis in ovo were analysed on the chicken embryo chorioallantoic membrane model (CAM). ASC-EV treatment reduced GBM proliferation in vitro and significantly downregulated invasiveness-related genes ITGα5 (in T98G and HROG63) and ITGß3 (in HROG36) and the vascularisation-inducing gene KDR (in all GBM lines). Additionally, an approximate 65% reduction in the GBM invasion rate was observed in CAM after ASC-EV treatment. Our study indicates that ASC-EVs possess antitumour properties, reducing GBM cell proliferation and invasiveness, and can be applied as anticancer therapeutics and medicine carriers.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Embrión de Pollo , Animales , Humanos , Glioblastoma/metabolismo , Células Madre/metabolismo , Tejido Adiposo/metabolismo , Proliferación Celular , Vesículas Extracelulares/metabolismo
7.
Plants (Basel) ; 11(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432868

RESUMEN

Medicinal and agricultural plants contain numerous phytochemical compounds with pronounced biological effects on human health. They are known to encapsulate most of their characteristic bioactive compounds within membranous elements of intercellular communication known as exosomes. These nanovesicles serve as capsules protecting their biological activity and improving their penetration into the tissue. Therefore, the application of plant exosome preparations holds considerable potential for cosmetics and pharmacy, but the quality and consistency of plant material for exosome isolation is of critical importance. Therefore, in this study, we aimed to evaluate yield, size distribution patterns, and antioxidant properties between nanovesicle preparations of the following portfolio of medicinal plants: Kalanchoe daigremontiana, Artemisia absinthium, Hypericum perforatum, Silybum marianum, Chelidonium majus, and Scutellaria baicalensis. Results showed that nanoparticle yield, size distribution, and antioxidant activities were specific to plant species. Compared to other plants, nanoparticle preparations from Artemisia absinthium were distinguished by remarkably higher yield and concentration, while the highest antioxidant activity of plant-derived nanoparticle preparations per weight and per particle was determined to occur in Chelidonium majus and Hypericum perforatum samples. Results showed no significant correlation in DPPH (2-diphenyl-1-picrylhydrazyl) free radical scavenging activity and FRAP (ferric reducing antioxidant power) between plant material and nanoparticle preparations. More detailed biochemical analysis of exosome preparations is necessary to validate their biological activity and its relation to source plant cells.

8.
Biology (Basel) ; 11(10)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36290387

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive CNS tumour with no efficient treatment, partly due to the retention of anticancer drugs by the blood-brain barrier (BBB) and their insufficient concentration in tumour cells. Extracellular vesicles (EVs) are attractive drug carriers because of their biocompatibility and ability to cross the BBB. Additional efficiency can be achieved by adding GBM-cell-specific ligands. GBM cells overexpress integrins; thus, one of the most straightforward targeting strategies is to modify EVs with integrin-recognising molecules. This study investigated the therapeutic potential of genetically engineered EVs with elevated membrane levels of the integrin-binding peptide RGD (RGD-EVs) against GBM cells in vitro. For RGD-EV production, stable RGD-HEK 293FT cells were generated by using a pcDNA4/TO-Lamp2b-iRGD-HA expression vector and performing antibiotic-based selection. RGD-EVs were isolated from RGD-HEK 293FT-cell-conditioned medium and characterised by size (Zetasizer), specific markers (ELISA) and RGD expression (Western Blot). Internalisation by human GBM cells HROG36 and U87 MG and BJ-5ta human fibroblasts was assessed by fluorescent EV RNA labelling. The effect of doxorubicin-loaded RGD-EVs on GBM cells was evaluated by the metabolic PrestoBlue viability assay; functional GAPDH gene knockdown by RGD-EV-encapsulated siRNA was determined by RT-qPCR. RGD-EVs had 40% higher accumulation in GBM cells (but not in fibroblasts) and induced significantly stronger toxicity by loaded doxorubicin and GAPDH silencing by loaded siRNA compared to unmodified EVs. Thus, RGD modification substantially increases the specific delivery capacity of HEK 293FT-derived EVs to GBM cells.

9.
Biomedicines ; 10(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35625762

RESUMEN

Neuronal-glial cell cultures are usually grown attached to or encapsulated in an adhesive environment as evenly distributed networks lacking tissue-like cell density, organization and morphology. In such cultures, microglia have activated amoeboid morphology and do not display extended and intensively branched processes characteristic of the ramified tissue microglia. We have recently described self-assembling functional cerebellar organoids promoted by hydrogels containing collagen-like peptides (CLPs) conjugated to a polyethylene glycol (PEG) core. Spontaneous neuronal activity was accompanied by changes in the microglial morphology and behavior, suggesting the cells might play an essential role in forming the functional neuronal networks in response to the peptide signalling. The present study examines microglial cell morphology and function in cerebellar cell organoid cultures on CLP-PEG hydrogels and compares them to the cultures on crosslinked collagen hydrogels of similar elastomechanical properties. Material characterization suggested more expressed fibril orientation and denser packaging in crosslinked collagen than CLP-PEG. However, CLP-PEG promoted a significantly higher microglial motility (determined by time-lapse imaging) accompanied by highly diverse morphology including the ramified (brightfield and confocal microscopy), more active Ca2+ signalling (intracellular Ca2+ fluorescence recordings), and moderate inflammatory cytokine level (ELISA). On the contrary, on the collagen hydrogels, microglial cells were significantly less active and mostly round-shaped. In addition, the latter hydrogels did not support the neuron synaptic activity. Our findings indicate that the synthetic CLP-PEG hydrogels ensure more tissue-like microglial morphology, motility, and function than the crosslinked collagen substrates.

10.
Medicina (Kaunas) ; 47(2): 107-12, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21734444

RESUMEN

BACKGROUND AND OBJECTIVE. Alzheimer's disease is a progressive neurodegenerative disease that is biochemically characterized by the accumulation of amyloid beta (Aß) peptides in the brain. The current hypothesis suggests that Aß oligomers rather than fibrillar aggregates are the most toxic species of Aß though the mechanisms of their neurotoxicity are unclear. The authors have previously shown that small Aß(1-42) oligomers at around 1 µM concentration caused rapid (in 24 h) neuronal death in cerebellar granule cell (CGC) cultures. In this study, we aimed to investigate whether protracted (up to 7 days) incubation of CGC cultures with lower submicromolar concentration of various aggregates of Aß(1-42) had an effect on viability of neurons. In order to get some insight into the mechanism of Aß-induced cell death, we also sought to determine whether extracellular Ca(2+) and process of endocytosis contributed to Aß oligomer-induced neurotoxicity and whether pharmacological interventions into these processes would prevent Aß oligomer-induced cell death. MATERIAL AND METHODS. Primary cultures of CGC were treated with various aggregate forms of Aß(1-42). Cell viability was assessed by fluorescent microscopy using propidium iodide and Hoechst 33342 staining. RESULTS. Exposure of neurons to 500 nM Aß(1-42) oligomers for 72-168 h caused extensive neuronal necrosis. Lower concentrations (100-250 nM) were not toxic to cells during 7 days of incubation. Aß(1-42) monomers and fibrils had no effect on neuronal viability even after 7 days of incubation. Treatment of neurons with EGTA, steroid hormone 17ß-estradiol, and methyl-ß-cyclodextrin significantly reduced Aß(1-42) oligomers-induced neuronal death. CONCLUSIONS. The results show that submicromolar concentrations of Aß(1-42) oligomers were highly toxic to neurons during protracted incubation inducing neuronal necrosis that can be prevented by chelating extracellular Ca(2+) with EGTA, inhibiting endocytosis with methyl-ß-cyclodextrin, or by estradiol, which may protect against mitochondrial permeability transition pore opening.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Ácido Egtácico/farmacología , Endocitosis/efectos de los fármacos , Estradiol/farmacología , Neuronas/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/patología , Microscopía Fluorescente , Necrosis , Neuronas/metabolismo , Neuronas/patología , Propidio/farmacología , Ratas , Ratas Wistar , beta-Ciclodextrinas/farmacología
11.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34451909

RESUMEN

Each year, millions of individuals suffer from a non-healing wound, abnormal scarring, or injuries accompanied by an infection. For these cases, scientists are searching for new therapeutic interventions, from which one of the most promising is the use of extracellular vesicles (EVs). Naturally, EV-based signaling takes part in all four wound healing phases: hemostasis, inflammation, proliferation, and remodeling. Such an extensive involvement of EVs suggests exploiting their action to modulate the impaired healing phase. Furthermore, next to their natural wound healing capacity, EVs can be engineered for better defined pharmaceutical purposes, such as carrying specific cargo or targeting specific destinations by labelling them with certain surface proteins. This review aims to promote scientific awareness in basic and translational research of EVs by summarizing the current knowledge about their natural role in each stage of skin repair and the most recent findings in application areas, such as wound healing, skin regeneration, and treatment of dermal diseases, including the stem cell-derived, plant-derived, and engineered EVs.

12.
Biology (Basel) ; 10(12)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34943274

RESUMEN

Viral infections induce extracellular vesicles (EVs) containing viral material and inflammatory factors. Exosomes can easily cross the blood-brain barrier during respiratory tract infection and transmit the inflammatory signal to the brain; however, such a hypothesis has no experimental evidence. The study investigated whether exosome-like vesicles (ELVs) from virus mimetic poly (I:C)-primed airway cells enter the brain and interact with brain immune cells microglia. Airway cells were isolated from Wistar rats and BALB/c mice; microglial cell cultures-from Wistar rats. ELVs from poly (I:C)-stimulated airway cell culture medium were isolated by precipitation, visualised by transmission electron microscopy, and evaluated by nanoparticle analyser; exosomal markers CD81 and CD9 were determined by ELISA. For in vitro and in vivo tracking, particles were loaded with Alexa Fluor 555-labelled RNA. Intracellular reactive oxygen species (ROS) were evaluated by DCFDA fluorescence and mitochondrial superoxide-by MitoSOX. ELVs from poly (I:C)-primed airway cells entered the brain within an hour after intranasal introduction, were internalised by microglia and induced intracellular and intramitochondrial ROS production. There was no ROS increase in microglial cells was after treatment with ELVs from airway cells untreated with poly (I:C). In addition, poly (I:C)-primed airway cells induced inflammatory cytokine expression in the brain. The data indicate that ELVs secreted by virus-primed airway cells might enter the brain, cause the activation of microglial cells and neuroinflammation.

13.
Antioxidants (Basel) ; 9(12)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322707

RESUMEN

Mitochondria are both the primary targets and mediators of ischaemic damage in brain cells. Insufficient oxygen causes reactive oxygen species that damage the mitochondria, leading to the loss of functionality and viability of highly energy-demanding neurons. We have recently found that aqueous (AqEP), polyethylene glycol-aqueous (Pg-AqEP) and ethanolic propolis extracts (EEP) can modulate mitochondria and ROS production in C6 cells of astrocytic origin. The aim of this study was to investigate the effect of the extracts on viability, mitochondrial efficiency and superoxide generation, and inflammatory cytokine release in primary rat cerebellar neuronal-glial cell cultures affected by ischaemia (mimicked by hypoxia +/- deoxyglucose). AqEP and Pg-AqEP (15-60 µg/mL of phenolic compounds, or PC) significantly increased neuronal viability in ischaemia-treated cultures, and this was accompanied by a reduction in mitochondrial superoxide levels. Less extended protection against ischaemia-induced superoxide production and death was exhibited by 2 to 4 µg/mL of PC EEP. Both Pg-AqEP and Ag-EP (but not EEP) significantly protected the cultures from hypoxia-induced elevation of TNF-α, IL-1ß and IL-6. Only Pg-AqEP (but not AqEP or EEP) prevented hypoxia-induced loss of the mitochondrial basal and ATP-coupled respiration rate, and significantly increased the mitochondrial respiratory capacity. Summarising, the study revealed that hydrophilic propolis extracts might protect brain cells against ischaemic injury by decreasing the level of mitochondrial superoxide and preventing inflammatory cytokines, and, in the case of Pg-AqEP, by protecting mitochondrial function.

14.
Biomolecules ; 10(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019635

RESUMEN

Damage to cerebral mitochondria, particularly opening of mitochondrial permeability transition pore (MPTP), is a key mechanism of ischemic brain injury, therefore, modulation of MPTP may be a potential target for a neuroprotective strategy in ischemic brain pathologies. The aim of this study was to investigate whether biguanides-metformin and phenformin as well as other inhibitors of Complex I of the mitochondrial electron transfer system may protect against ischemia-induced cell death in brain slice cultures by suppressing MPTP, and whether the effects of these inhibitors depend on the age of animals. Experiments were performed on brain slice cultures prepared from 5-7-day (premature) and 2-3-month old (adult) rat brains. In premature brain slice cultures, simulated ischemia (hypoxia plus deoxyglucose) induced necrosis whereas in adult rat brain slice cultures necrosis was induced by hypoxia alone and was suppressed by deoxyglucose. Phenformin prevented necrosis induced by simulated ischemia in premature and hypoxia-induced-in adult brain slices, whereas metformin was protective in adult brain slices cultures. In premature brain slices, necrosis was also prevented by Complex I inhibitors rotenone and amobarbital and by MPTP inhibitor cyclosporine A. The latter two inhibitors were protective in adult brain slices as well. Short-term exposure of cultured neurons to phenformin, metformin and rotenone prevented ionomycin-induced MPTP opening in intact cells. The data suggest that, depending on the age, phenformin and metformin may protect the brain against ischemic damage possibly by suppressing MPTP via inhibition of mitochondrial Complex I.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Metformina/administración & dosificación , Mitocondrias/efectos de los fármacos , Fenformina/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Complejo I de Transporte de Electrón/genética , Humanos , Masculino , Mitocondrias/genética , Poro de Transición de la Permeabilidad Mitocondrial/antagonistas & inhibidores , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Necrosis por Permeabilidad de la Transmembrana Mitocondrial/efectos de los fármacos , Necrosis/tratamiento farmacológico , Necrosis/metabolismo , Necrosis/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Fosforilación Oxidativa/efectos de los fármacos , Ratas
15.
Artículo en Inglés | MEDLINE | ID: mdl-33014989

RESUMEN

Chemical and mechanical properties of a tumor microenvironment are essential players in cancer progression, and it is important to precisely control the extracellular conditions while designing cancer in vitro models. The study investigates synthetic hydrogel matrices from multi-arm polyethylene glycol (PEG) functionalized with collagen-like peptide (CLP) CG(PKG)4(POG)4(DOG)4 alone and conjugated with either cell adhesion peptide RGD (mimicking fibronectin) or IKVAV (mimicking laminin). Human glioblastoma HROG36, rat C6 glioma cells, and A375 human melanoma cells were grown on the hydrogels and monitored for migration, proliferation, projected cell area, cell shape index, size and number, distribution of focal contacts in individual cells, and focal adhesion number. PEG-CLP-RGD induced migration of both glioma cell lines and also stimulated proliferation (assessed as metabolic activity) of HROG36 cells. Migration of C6 cells were also stimulated by PEG-CLP-IKVAV. These responses strongly correlated with the changes in adhesion and morphology parameters of individual cells - projected cell area, cell shape index, and focal contact number. Melanoma A375 cell proliferation was increased by PEG-CLP-RGD, and this was accompanied by a decrease in cell shape index. However, neither RGD nor IKVAV conjugated to PEG-CLP stimulated migratory capacity of A375 cells. Taken together, the study presents synthetic scaffolds with extracellular matrix (ECM)-mimicking peptides that allow for the exploration of the effect of ECM signaling to cancer cells.

16.
Foods ; 9(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906495

RESUMEN

Nutmeg (Myristica fragrans) essential oil has antimicrobial, antiseptic, antiparasitic, anti-inflammatory, and antioxidant properties. We have recently demonstrated that hydrodistillation of nutmeg essential oil by applying magnesium aluminometasilicate as an excipient significantly increases both the content and amount of bioactive substances in the oil and hydrolats. In this study, we aimed to compare the antioxidant, antimicrobial, and anti-inflammatory activity of hydrolats and essential oil obtained by hydrodistillation in the presence and absence of magnesium aluminometasilicate as an excipient. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method revealed that magnesium aluminometasilicate did not significantly improved antioxidant activity of both essential oil and hydrolat. Antibacterial efficiency was evaluated by monitoring growth of 15 bacterial strains treated by a range of dilutions of the essential oil and the hydrolats. Essential oil with an excipient completely inhibited the growth of E. faecalis, S. mutans (referent), and P. multocida, whereas the pure oil was only efficient against the latter strain. Finally, the anti-inflammatory properties of the substances were assessed in a fibroblast cell culture treated with viral dsRNR mimetic Poly I:C. The essential oil with an excipient protected cells against Poly I:C-induced necrosis more efficiently compared to pure essential oil. Also, both the oil and the hydrolats with aluminometasilicate were more efficient in preventing IL-6 release in the presence of Poly I:C. Our results show that the use of magnesium aluminometasilicate as an excipient might change and in some cases improve the biological activities of nutmeg essential oil and hydrolats.

17.
Foods ; 10(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374689

RESUMEN

Glioblastoma multiforme is an aggressive and invasive disease with no efficient therapy available, and there is a great need for finding alternative treatment strategies. This study aimed to investigate anticancer activity of the extracts of the Japanese quince (JQ) cultivars 'Darius', 'Rondo', and 'Rasa' leaf extracts on glioblastoma C6 and HROG36 cells. As identified by ultra high performance liquid chromatography electrospray ionization tandem mass spectrometry, the extracts contained three prevailing groups of phenols: hydroxycinnamic acid derivatives; flavan-3-ols; and flavonols. Sixteen phenols were detected; the predominant compound was chlorogenic acid. The sum of detected phenols varied significantly between the cultivars ranging from 9322 µg/g ('Rondo') to 17,048 µg/g DW ('Darius'). Incubation with the extracts decreased the viability of glioblastoma HROG36 cells with an efficiency similar to temozolomide, a drug used for glioblastoma treatment. In the case of C6 glioblastoma cells, the extracts were even more efficient than temozolomide. Interestingly, primary cerebellar neuronal-glial cells were significantly less sensitive to the extracts compared to the cancer cell lines. The results showed that JQ leaf ethanol extracts are rich in phenolic compounds, can efficiently reduce glioblastoma cell viability while preserving non-cancerous cells, and are worth further investigations as potential anticancer drugs.

18.
Biomolecules ; 10(5)2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408703

RESUMEN

Hydrogel-supported neural cell cultures are more in vivo-relevant compared to monolayers formed on glass or plastic substrates. However, there is a lack of synthetic microenvironment available for obtaining standardized and easily reproducible cultures characterized by tissue-mimicking cell composition, cell-cell interactions, and functional networks. Synthetic peptides representing the biological properties of the extracellular matrix (ECM) proteins have been reported to promote the adhesion-driven differentiation and functional maturation of neural cells. Thus, such peptides can serve as building blocks for engineering a standardized, all-synthetic environment. In this study, we have compared the effect of two chemically crosslinked hydrogel compositions on primary cerebellar cells: collagen-like peptide (CLP), and CLP with an integrin-binding motif arginine-glycine-aspartate (CLP-RGD), both conjugated to polyethylene glycol molecular templates (PEG-CLP and PEG-CLP-RGD, respectively) and fabricated as self-supporting membranes. Both compositions promoted a spontaneous organization of primary cerebellar cells into tissue-like clusters with fast-rising Ca2+ signals in soma, reflecting action potential generation. Notably, neurons on PEG-CLP-RGD had more neurites and better synaptic efficiency compared to PEG-CLP. For comparison, poly-L-lysine-coated glass and plastic surfaces did not induce formation of such spontaneously active networks. Additionally, contrary to the hydrogel membranes, glass substrates functionalized with PEG-CLP and PEG-CLP-RGD did not sufficiently support cell attachment and, subsequently, did not promote functional cluster formation. These results indicate that not only chemical composition but also the hydrogel structure and viscoelasticity are essential for bioactive signaling. The synthetic strategy based on ECM-mimicking, multifunctional blocks in registry with chemical crosslinking for obtaining tissue-like mechanical properties is promising for the development of fast and well standardized functional in vitro neural models and new regenerative therapies.


Asunto(s)
Cerebelo/citología , Colágeno/química , Hidrogeles/química , Oligopéptidos/química , Organoides/citología , Andamios del Tejido/química , Animales , Astrocitos/fisiología , Materiales Biomiméticos/química , Señalización del Calcio , Células Cultivadas , Reactivos de Enlaces Cruzados/química , Matriz Extracelular/química , Neuronas/fisiología , Organoides/metabolismo , Ratas , Ratas Wistar
19.
Cell Death Dis ; 11(8): 645, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811809

RESUMEN

The pathogenesis of Alzheimer's disease (AD), a slowly-developing age-related neurodegenerative disorder, is a result of the action of multiple factors including deregulation of Ca2+ homeostasis, mitochondrial dysfunction, and dysproteostasis. Interaction of these factors in astrocytes, principal homeostatic cells in the central nervous system, is still poorly understood. Here we report that in immortalized hippocampal astrocytes from 3xTg-AD mice (3Tg-iAstro cells) bioenergetics is impaired, including reduced glycolysis and mitochondrial oxygen consumption, and increased production of reactive oxygen species. Shotgun proteomics analysis of mitochondria-ER-enriched fraction showed no alterations in the expression of mitochondrial and OxPhos proteins, while those related to the ER functions and protein synthesis were deregulated. Using ER- and mitochondria-targeted aequorin-based Ca2+ probe we show that, in 3Tg-iAstro cells, ER was overloaded with Ca2+ while Ca2+ uptake by mitochondria upon ATP stimulation was reduced. This was accompanied by the increase in short distance (≈8-10 nm) contact area between mitochondria and ER, upregulation of ER-stress/unfolded protein response genes Atf4, Atf6 and Herp, and reduction of global protein synthesis rate. We suggest that familial AD mutations in 3Tg-iAstro cells induce mitochondria-ER interaction changes that deregulate astrocytic bioenergetics, Ca2+ homeostasis and proteostasis. These factors may interact, creating a pathogenic loop compromising homeostatic and defensive functions of astroglial cells predisposing neurons to dysfunction.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo Energético , Glucólisis/fisiología , Hipocampo/metabolismo , Homeostasis , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Neuronas/metabolismo , Consumo de Oxígeno/fisiología , Proteómica , Proteostasis , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada
20.
J Biomed Sci ; 16: 70, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19671187

RESUMEN

BACKGROUND: Heart ischemia can rapidly induce apoptosis and mitochondrial dysfunction via mitochondrial permeability transition-induced cytochrome c release. We tested whether nitric oxide (NO) can block this damage in isolated rat heart, and, if so, by what mechanisms. METHODS: Hearts were perfused with 50 microM DETA/NO (NO donor), then subjected to 30 min stop-flow ischemia or ischemia/reperfusion. Isolated heart mitochondria were used to measure the rate of mitochondrial oxygen consumption and membrane potential using oxygen and tetraphenylphosphonium-selective electrodes. Mitochondrial and cytosolic cytochrome c levels were measured spectrophotometrically and by ELISA. The calcium retention capacity of isolated mitochondria was measured using the fluorescent dye Calcium Green-5N. Apoptosis and necrosis were evaluated by measuring the activity of caspase-3 in cytosolic extracts and the activity of lactate dehydrogenase in perfusate, respectively. RESULTS: 30 min ischemia caused release of mitochondrial cytochrome c to the cytoplasm, inhibition of the mitochondrial respiratory chain, and stimulation of mitochondrial proton permeability. 3 min perfusion with 50 microM DETA/NO of hearts prior to ischemia decreased this mitochondrial damage. The DETA/NO-induced blockage of mitochondrial cytochrome c release was reversed by a protein kinase G (PKG) inhibitor KT5823, or soluble guanylate cyclase inhibitor ODQ or protein kinase C inhibitors (Ro 32-0432 and Ro 31-8220). Ischemia also stimulated caspase-3-like activity, and this was substantially reduced by pre-perfusion with DETA/NO. Reperfusion after 30 min of ischemia caused no further caspase activation, but was accompanied by necrosis, which was completely prevented by DETA/NO, and this protection was blocked by the PKG inhibitor. Incubation of isolated heart mitochondria with activated PKG blocked calcium-induced mitochondrial permeability transition and cytochrome c release. Perfusion of non-ischemic heart with DETA/NO also made the subsequently isolated mitochondria resistant to calcium-induced permeabilisation, and this protection was blocked by the PKG inhibitor. CONCLUSION: The results indicate that NO rapidly protects the ischemic heart from apoptosis and mitochondrial dysfunction via PKG-mediated blockage of mitochondrial permeability transition and cytochrome c release.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Quinasas Dependientes de GMP Cíclico/fisiología , Citocromos c/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Isquemia Miocárdica/patología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/fisiología , Triazenos/farmacología , Animales , Carbazoles/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Indoles/farmacología , Masculino , Mitocondrias Cardíacas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/farmacología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA