Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Phys Rev Lett ; 118(13): 138003, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28409952

RESUMEN

Many systems in nature, from ferromagnets to flocks of birds, exhibit ordering phenomena on the large scale. In condensed matter systems, order is statistically robust for large enough dimensions, with relative fluctuations due to noise vanishing with system size. Several biological systems, however, are less stable and spontaneously change their global state on relatively short time scales. Here we show that there are two crucial ingredients in these systems that enhance the effect of noise, leading to collective changes of state on finite time scales and off-equilibrium behavior: the nonsymmetric nature of interactions between individuals, and the presence of local heterogeneities in the topology of the network. Our results might explain what is observed in several living systems and are consistent with recent experimental data on bird flocks and other animal groups.

2.
Phys Rev Lett ; 114(21): 218101, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26066459

RESUMEN

Experiments find coherent information transfer through biological groups on length and time scales distinctly below those on which asymptotically correct hydrodynamic theories apply. We present here a new continuum theory of collective motion coupling the velocity and density fields of Toner and Tu to the inertial spin field recently introduced to describe information propagation in natural flocks of birds. The long-wavelength limit of the new equations reproduces the Toner-Tu theory, while at shorter wavelengths (or, equivalently, smaller damping), spin fluctuations dominate over density fluctuations, and second-sound propagation of the kind observed in real flocks emerges. We study the dispersion relation of the new theory and find that when the speed of second sound is large, a gap in momentum space sharply separates first- from second-sound modes. This gap implies the existence of silent flocks, namely, of medium-sized systems across which information cannot propagate in a linear and underdamped way, either under the form of orientational fluctuations or under that of density fluctuations, making it hard for the group to achieve coordination.


Asunto(s)
Conducta Animal/fisiología , Vuelo Animal/fisiología , Modelos Biológicos , Movimiento/fisiología , Animales , Aves
3.
Nat Commun ; 14(1): 1345, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906703

RESUMEN

Understanding the microscopic origins of collective reorientational motions in aqueous systems requires techniques that allow us to reach beyond our chemical imagination. Herein, we elucidate a mechanism using a protocol that automatically detects abrupt motions in reorientational dynamics, showing that large angular jumps in liquid water involve highly cooperative orchestrated motions. Our automatized detection of angular fluctuations, unravels a heterogeneity in the type of angular jumps occurring concertedly in the system. We show that large orientational motions require a highly collective dynamical process involving correlated motion of many water molecules in the hydrogen-bond network that form spatially connected clusters going beyond the local angular jump mechanism. This phenomenon is rooted in the collective fluctuations of the network topology which results in the creation of defects in waves on the THz timescale. The mechanism we propose involves a cascade of hydrogen-bond fluctuations underlying angular jumps and provides new insights into the current localized picture of angular jumps, and its wide use in the interpretations of numerous spectroscopies as well in reorientational dynamics of water near biological and inorganic systems. The role of finite size effects, as well as of the chosen water model, on the collective reorientation is also elucidated.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 1): 041126, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17155041

RESUMEN

Dissipative effects in electromagnetism on macroscopic scales are examined by coarse-graining the microscopic Maxwell equations with respect to time. We illustrate a procedure to derive the dissipative effects on the macroscopic scale by using a Green-Kubo type expression in terms of the microscopic fluctuations and the correlations between them. The resulting macroscopic Maxwell equations are formulated within the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) framework, accounting also for inhomogeneous temperature.

5.
IEEE Trans Pattern Anal Mach Intell ; 37(12): 2451-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26539850

RESUMEN

Tracking multiple moving targets allows quantitative measure of the dynamic behavior in systems as diverse as animal groups in biology, turbulence in fluid dynamics and crowd and traffic control. In three dimensions, tracking several targets becomes increasingly hard since optical occlusions are very likely, i.e., two featureless targets frequently overlap for several frames. Occlusions are particularly frequent in biological groups such as bird flocks, fish schools, and insect swarms, a fact that has severely limited collective animal behavior field studies in the past. This paper presents a 3D tracking method that is robust in the case of severe occlusions. To ensure robustness, we adopt a global optimization approach that works on all objects and frames at once. To achieve practicality and scalability, we employ a divide and conquer formulation, thanks to which the computational complexity of the problem is reduced by orders of magnitude. We tested our algorithm with synthetic data, with experimental data of bird flocks and insect swarms and with public benchmark datasets, and show that our system yields high quality trajectories for hundreds of moving targets with severe overlap. The results obtained on very heterogeneous data show the potential applicability of our method to the most diverse experimental situations.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Imagen de Cuerpo Entero/métodos , Animales , Aves , Aumento de la Imagen/métodos , Insectos , Aprendizaje Automático , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador
6.
J R Soc Interface ; 12(108): 20150319, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26236825

RESUMEN

One of the most impressive features of moving animal groups is their ability to perform sudden coherent changes in travel direction. While this collective decision can be a response to an external alarm cue, directional switching can also emerge from the intrinsic fluctuations in individual behaviour. However, the cause and the mechanism by which such collective changes of direction occur are not fully understood yet. Here, we present an experimental study of spontaneous collective turns in natural flocks of starlings. We employ a recently developed tracking algorithm to reconstruct three-dimensional trajectories of each individual bird in the flock for the whole duration of a turning event. Our approach enables us to analyse changes in the individual behaviour of every group member and reveal the emergent dynamics of turning. We show that spontaneous turns start from individuals located at the elongated tips of the flocks, and then propagate through the group. We find that birds on the tips deviate from the mean direction of motion much more frequently than other individuals, indicating that persistent localized fluctuations are the crucial ingredient for triggering a collective directional change. Finally, we quantitatively verify that birds follow equal-radius paths during turning, the effects of which are a change of the flock's orientation and a redistribution of individual locations in the group.


Asunto(s)
Migración Animal/fisiología , Vuelo Animal/fisiología , Modelos Biológicos , Conducta Social , Estorninos/fisiología , Animales
7.
Nat Phys ; 10(9): 615-698, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25264452

RESUMEN

Collective decision-making in biological systems requires all individuals in the group to go through a behavioural change of state. During this transition fast and robust transfer of information is essential to prevent cohesion loss. The mechanism by which natural groups achieve such robustness, though, is not clear. Here we present an experimental study of starling flocks performing collective turns. We find that information about direction changes propagates across the flock with a linear dispersion law and negligible attenuation, hence minimizing group decoherence. These results contrast starkly with current models of collective motion, which predict diffusive transport of information. Building on spontaneous symmetry breaking and conservation laws arguments, we formulate a new theory that correctly reproduces linear and undamped propagation. Essential to the new framework is the inclusion of the birds' behavioural inertia. The new theory not only explains the data, but also predicts that information transfer must be faster the stronger the group's orientational order, a prediction accurately verified by the data. Our results suggest that swift decision-making may be the adaptive drive for the strong behavioural polarization observed in many living groups.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(4 Pt 2): 046111, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23214656

RESUMEN

In human crowds, interactions among individuals give rise to a variety of self-organized collective motions that help the group to effectively solve the problem of coordination. However, it is still not known exactly how humans adjust their behavior locally, nor what are the direct consequences on the emergent organization. One of the underlying mechanisms of adjusting individual motions is the stepping dynamics. In this paper, we present first quantitative analysis on the stepping behavior in a one-dimensional pedestrian flow studied under controlled laboratory conditions. We find that the step length is proportional to the velocity of the pedestrian, and is directly related to the space available in front of him, while the variations of the step duration are much smaller. This is in contrast with locomotion studies performed on isolated pedestrians and shows that the local density has a direct influence on the stepping characteristics. Furthermore, we study the phenomena of synchronization-walking in lock step-and show its dependence on flow densities. We show that the synchronization of steps is particularly important at high densities, which has direct impact on the studies of optimizing pedestrians' flow in congested situations. However, small synchronization and antisynchronization effects are found also at very low densities, for which no steric constraints exist between successive pedestrians, showing the natural tendency to synchronize according to perceived visual signals.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 2): 036111, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22587153

RESUMEN

We present experimental results obtained for a one-dimensional pedestrian flow using high precision motion capture. The full pedestrians' trajectories are obtained. In this paper, we focus on the fundamental diagram, and on the relation between the instantaneous velocity and spatial headway (distance to the predecessor). While the latter was found to be linear in previous experiments, we show that it is rather a piecewise linear behavior which is found if larger density ranges are covered. Indeed, our data clearly exhibits three distinct regimes in the behavior of pedestrians that follow each other. The transitions between these regimes occur at spatial headways of about 1.1 and 3 m, respectively. This finding could be useful for future modeling.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(1 Pt 1): 011131, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20365347

RESUMEN

We develop a systematic coarse-graining procedure which establishes the connection between models of mixtures of immiscible fluids at different length and time scales. We start from the Cahn-Hilliard model of spinodal decomposition in a binary fluid mixture under flow from which we derive the coarse-grained description. The crucial step in this procedure is to identify the relevant coarse-grained variables and find the appropriate mapping which expresses them in terms of the more microscopic variables. In order to capture the physics of the Doi-Ohta level, we introduce the interfacial width as an additional variable at that level. In this way, we account for the stretching of the interface under flow and derive analytically the convective behavior of the relevant coarse-grained variables, which in the long wavelength limit recovers the familiar phenomenological Doi-Ohta model. In addition, we obtain the expression for the interfacial tension in terms of the Cahn-Hilliard parameters as a direct result of the developed coarse-graining procedure. Finally, by analyzing the numerical results obtained from the simulations on the Cahn-Hilliard level, we discuss that dissipative processes at the Doi-Ohta level are of the same origin as in the Cahn-Hilliard model. The way to estimate the interface relaxation times of the Doi-Ohta model from the underlying morphology dynamics simulated at the Cahn-Hilliard level is established.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA