RESUMEN
Interfacial engineering has long been a vital means of improving thin-film device performance, especially for organic electronics, perovskites, and hybrid devices. It greatly facilitates the fabrication and performance of solution-processed thin-film devices, including organic field effect transistors (OFETs), organic solar cells (OSCs), perovskite solar cells (PVSCs), and organic light-emitting diodes (OLEDs). However, due to the limitation of traditional interfacial materials, further progress of these thin-film devices is hampered particularly in terms of stability, flexibility, and sensitivity. The deadlock has gradually been broken through the development of self-assembled monolayers (SAMs), which possess distinct benefits in transparency, diversity, stability, sensitivity, selectivity, and surface passivation ability. In this review, we first showed the evolution of SAMs, elucidating their working mechanisms and structure-property relationships by assessing a wide range of SAM materials reported to date. A comprehensive comparison of various SAM growth, fabrication, and characterization methods was presented to help readers interested in applying SAM to their works. Moreover, the recent progress of the SAM design and applications in mainstream thin-film electronic devices, including OFETs, OSCs, PVSCs and OLEDs, was summarized. Finally, an outlook and prospects section summarizes the major challenges for the further development of SAMs used in thin-film devices.
RESUMEN
Constructing low-dimensional/three-dimensional (LD/3D) perovskite solar cells can improve efficiency and stability. However, the design and selection of LD perovskite capping materials are incredibly scarce for inverted perovskite solar cells (PSCs) because LD perovskite capping layers often favor hole extraction and impede electron extraction. Here, we develop a facile and effective strategy to modify the perovskite surface by passivating the surface defects and modulating surface electrical properties by incorporating morpholine hydriodide (MORI) and thiomorpholine hydriodide (SMORI) on the perovskite surface. Compared with the PI treatment that we previously developed, the one-dimensional (1D) perovskite capping layer derived from PI is transformed into a two-dimensional (2D) perovskite capping layer (with MORI or SMORI), achieving dimension regulation. It is shown that the 2D SMORI perovskite capping layer induces more robust surface passivation and stronger n-N homotype 2D/3D heterojunctions, achieving a p-i-n inverted solar cell with an efficiency of 24.55%, which retains 87.6% of its initial efficiency after 1500 h of operation at the maximum power point (MPP). Furthermore, 5 × 5 cm2 perovskite mini-modules are presented, achieving an active-area efficiency of 22.28%. In addition, the quantum well structure in the 2D perovskite capping layer increases the moisture resistance, suppresses ion migration, and improves PSCs' structural and environmental stability.
RESUMEN
Additive engineering is widely utilized to optimize film morphology in active layers of organic solar cells (OSCs). However, the role of additive in film formation and adjustment of film morphology remains unclear at the molecular level. Here, taking high-efficiency Y6-based OSC films as an example, this work thus employs all-atom molecular-dynamics simulations to investigate how introduction of additives with different π-conjugation degree thermodynamically and dynamically impacts nanoscale molecular packings. These results demonstrate that the van der Waals (vdW) interactions of the Y6 end groups with the studied additives are strongest. The larger the π-conjugation degree of the additive molecules, the stronger the vdW interactions between additive and Y6 molecules. Due to such vdW interactions, the π-conjugated additive molecules insert into the neighboring Y6 molecules, thus opening more space for relaxation of Y6 molecules to trigger more ordered packing. Increasing the interactions between the Y6 end groups and the additive molecules not only accelerates formation of the Y6 ordered packing, but also induces shorter Y6-intermolecular distances. This work reveals the fundamental molecular-level mechanism behind film formation and adjustment of film morphology via additive engineering, providing an insight into molecular design of additives toward optimizing morphologies of organic semiconductor films.
RESUMEN
Design of hypotoxic lead-free perovskites, e.g. Bismuth(Bi)-based perovskites, is much beneficial for commercialization of perovskite X-ray detectors due to their strong radiation absorption. Nevertheless, the design principles governing the selection of A-site cations for achieving high-performance X-ray detectors remain elusive. Here, seven molecules (methylamine MA, amine NH3, dimethylbiguanide DGA, phenylethylamine PEA, 4-fluorophenethylamine p-FPEA, 1,3-propanediamine PDA, and 1,4-butanediamine BDA) and calculated their dipole moments and interaction strength with metal halide (BiI3) are selected. The first-principles calculations and related spectroscopy measurements confirm that organic molecules (DGA) with large dipole moments can have strong interactions with perovskite octahedron and improve the carrier transport between the organic and inorganic clusters. Consequently, zero-dimensional single crystal (SC) (DGA)BiI5âH2O is synthesized. The (DGA)BiI5âH2O SCs demonstrate an exceptional carrier mobility-lifetime product of 6.55 × 10-3 cm2 V-1, resulting in the high sensitivity of 5879.4 µCGyair -1cm-2, featuring a low detection limit (4.7 nGyair s-1) and remarkable X-ray irradiation stability even after 100 days of aging at a high electric field (100 V mm-1). Furthermore, the (DGA)BiI5âH2O SCs for imaging, achieving a notable spatial resolution of 5.5 lp mm-1 are applied. This investigation establishes a pathway for systematically screening A-site cations to design low-dimensional SCs for high-performance X-ray detection.
RESUMEN
Self-assembled monolayers (SAMs) emerging as promising hole-selective layers (HSLs) are advantageous for facile processability, low cost, and minimal material consumption in the fabrication of both perovskite solar cells (PSCs) and organic solar cells (OSCs). However, owing to the different nature between perovskites and organic semiconductors, few SAMs were reported to effectively accommodate both PSCs and OSCs at the same time. In this regard, a universally applicable SAM that can accommodate both perovskites and organic semiconductors could be desirable for simplifying cell manufacturing, especially from an industrial perspective. In this work, we designed a SAM, TDPA-Cl by introducing chlorinated phenothiazine as the headgroup and linking with anchor phosphonic acid through a butyl chain. The resulting dense SAM was carefully characterized in terms of molecular bonding, surface morphology, and packing density, and its functions in OSCs and PSCs were discussed from the aspects of interactions with the absorber layer, energy level alignment, and charge-selective dipoles. The PM6:Y6-based OSCs with TDPA-Cl SAM as the HSL showed a superior performance to those with PEDOT:PSS. Furthermore, the universality was proved with an efficiency of 17.4% in the D18:Y6 system. In PSCs, the TDPA-Cl-based devices delivered a better performance of 22.4% than the PTAA-based devices (20.8%) with improved processability and reproducibility. This work represents a SAM with reasonably good compromise between the differing requirements of OSCs and PSCs.
RESUMEN
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2â³,3â³:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (â¼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
RESUMEN
Traditionally used phenylethylamine iodide (PEAI) and its derivatives, such as ortho-fluorine o-F-PEAI, in interfacial modification, are beneficial for perovskite solar cell (PSC) efficiency but vulnerable to heat stability above 85 °C due to ion migration. To address this issue, we propose a composite interface modification layer incorporating the discotic liquid crystal 2,3,6,7,10,11-hexa(pentoxy)triphenylene (HAT5) into o-F-PEAI. The triphenyl core in HAT5 promotes π-π stacking self-assembly and enhances its interaction with o-F-PEAI, forming an oriented columnar phase that improves hole extraction along the one-dimensional direction. HAT5 repairs structural defects in the interfacial layer and retains the layered structure to inhibit ion migration under heating. Ultimately, our approach increases the efficiency of solar cells from 23.36 % to 25.02 %. The thermal stability of the devices retains 80.1 % of their initial efficiency after aging at 85 °C for 1008â hours without encapsulation. Moreover, the optimized PSCs maintained 82.4 % of the initial efficiency after aging under one sunlight exposure for 1008â hours. This work provides a simple yet effective strategy using composite materials for interface modification to enhance the thermal and light stability of semiconductor devices.
RESUMEN
Inverted perovskite solar cells (PSCs) are preferred for tandem applications due to their superior compatibility with diverse bottom solar cells. However, the solution processing and low formation energy of perovskites inevitably lead to numerous defects at both the bulk and interfaces. We report a facile and effective strategy for precisely modulating the perovskite by incorporating AlOx deposited by atomic layer deposition (ALD) on the top interface. We find that Al3+ can not only infiltrate the bulk phase and interact with halide ions to suppress ion migration and phase separation but also regulate the arrangement of energy levels and passivate defects on the perovskite surface and grain boundaries. Additionally, ALD-AlOx exhibits an encapsulation effect through a dense interlayer. Consequently, the ALD-AlOx treatment can significantly improve the power conversion efficiency (PCE) to 21.80 % for 1.66 electron volt (eV) PSCs. A monolithic perovskite-silicon TSCs using AlOx-modified perovskite achieved a PCE of 28.5 % with excellent photothermal stability. More importantly, the resulting 1.55â eV PSC and module achieved a PCE of 25.08 % (0.04â cm2) and 21.01 % (aperture area of 15.5â cm2), respectively. Our study provides an effective way to efficient and stable wide-band gap perovskite for perovskite-silicon TSCs and paves the way for large-area inverted PSCs.
RESUMEN
Inverted perovskite/organic tandem solar cells (P/O TSCs) suffer from poor long-term device stability due to halide segregation in organic-inorganic hybrid wide-band gap (WBG) perovskites, which hinders their practical deployment. Therefore, developing all-inorganic WBG perovskites for incorporation into P/O TSCs is a promising strategy because of their superior stability under continuous illumination. However, these inorganic WBG perovskites also face some critical issues, including rapid crystallization, phase instability, and large energy loss, etc. To tackle these issues, two multifunctional additives based on 9,10-anthraquinone-2-sulfonic acid (AQS) are developed to regulate the perovskite crystallization by mediating the intermediate phases and suppress the halide segregation through the redox-shuttle effect. By coupling with organic cations having the desirable functional groups and dipole moments, these additives can effectively passivate the defects and adjust the alignment of interface energy levels. Consequently, a record Voc approaching 1.3â V with high power conversion efficiency (PCE) of 18.59 % could be achieved in a 1.78â eV band gap single-junction inverted all-inorganic PSC. More importantly, the P/O TSC derived from this cell demonstrates a T90 lifetime of 1000â h under continuous operation, presenting the most stable P/O TSCs reported so far.
RESUMEN
The power conversion efficiencies (PCEs) of perovskite solar cells have recently developed rapidly compared to crystalline silicon solar cells. To have an effective way to control the crystallization of perovskite thin films is the key for achieving good device performance. However, a paradox in perovskite crystallization is from the mismatch between nucleation and Oswald ripening. Usually, the large numbers of nucleation sites tend to weak Oswald ripening. Here, we proposed a new mechanism to promote the formation of nucleation sites by reducing surface energy from 44.9â mN/m to 36.1â mN/m, to spontaneously accelerate the later Oswald ripening process by improving the grain solubility through the elastic modulus regulation. The ripening rate is increased from 2.37â Åm â s-1 to 4.61â Åm â s-1 during annealing. Finally, the solar cells derived from the optimized films showed significantly improved PCE from 23.14 % to 25.32 %. The long-term stability tests show excellent thermal stability (the optimized device without encapsulation maintaining 82 % of its initial PCE after 800â h aging at 85 °C) and an improved light stability under illumination. This work provides a new method, the elastic modulus regulation, to enhance the ripening process.
RESUMEN
We report a highly crystalline self-assembled multilayer (SAMUL) that is fundamentally different from the conventional monolayer or disordered bilayer used for hole-extraction in inverted perovskite solar cells (PSCs). The SAMUL can be easily formed on ITO substrate to establish better surface coverage to enhance the performance and stability of PSCs. A detailed structure-property-performance relationship of molecules used for SAMUL is established through a systematic study of their crystallinity, molecular packing, and hole-transporting properties. These SAMULs are rationally optimized by varying their molecular structures and deposition methods through thermal evaporation or spin-coating for fabricating PSCs. The CbzNaphPPA-based SAMUL was chosen for fabricating inverted PSCs due to it exhibiting the highest crystallinity and hole mobility which is derived from the ordered H-aggregation. This resulted in a remarkably high fill factor of 86.45 %, which enables a very impressive power conversion efficiency (PCE) of 26.07 % to be achieved along with excellent device stability (94 % of its initial PCE retained after continuous operation for 1200â h under 1-sun irradiation at maximum power point at 65 °C). Additionally, a record-high PCE of 23.50 % could be achieved by adopting a thermally evaporated SAMUL. This greatly simplifies and broadens the scope for SAM to be used for large-area devices on diverse substrates.
RESUMEN
Functional additives that can interact with the perovskite precursors to form the intermediate phase have been proven essential in obtaining uniform and stable α-FAPbI3 films. Among them, Cl-based volatile additives are the most prevalent in the literature. However, their exact role is still unclear, especially in inverted perovskite solar cells (PSCs). In this work, we have systematically studied the functions of Cl-based volatile additives and MA-based additives in formamidinium lead iodide (FAPbI3)-based inverted PSCs. Using in situ photoluminescence, we provide clear evidence to unravel the different roles of volatile additives (NH4Cl, FACl, and MACl) and MA-based additives (MACl, MABr, and MAI) in the nucleation, crystallization, and phase transition of FAPbI3. Three different kinds of crystallization routes are proposed based on the above additives. The non-MA volatile additives (NH4Cl and FACl) were found to promote crystallization and lower the phase-transition temperatures. The MA-based additives could quickly induce MA-rich nuclei to form pure α-phase FAPbI3 and dramatically reduce phase-transition temperatures. Furthermore, volatile MACl provides a unique effect on promoting the growth of secondary crystallization during annealing. The optimized solar cells with MACl can achieve an efficiency of 23.1%, which is the highest in inverted FAPbI3-based PSCs.
RESUMEN
Organic photovoltaics (OPVs) have achieved great progress in recent years due to delicately designed non-fullerene acceptors (NFAs). Compared with tailoring of the aromatic heterocycles on the NFA backbone, the incorporation of conjugated side-groups is a cost-effective way to improve the photoelectrical properties of NFAs. However, the modifications of side-groups also need to consider their effects on device stability since the molecular planarity changes induced by side-groups are related to the NFA aggregation and the evolution of the blend morphology under stresses. Herein, a new class of NFAs with local-isomerized conjugated side-groups are developed and the impact of local isomerization on their geometries and device performance/stability are systematically investigated. The device based on one of the isomers with balanced side- and terminal-group torsion angles can deliver an impressive power conversion efficiency (PCE) of 18.5%, with a low energy loss (0.528 V) and an excellent photo- and thermal stability. A similar approach can also be applied to another polymer donor to achieve an even higher PCE of 18.8%, which is among the highest efficiencies obtained for binary OPVs. This work demonstrates the effectiveness of applying local isomerization to fine-tune the side-group steric effect and non-covalent interactions between side-group and backbone, therefore improving both photovoltaic performance and stability of fused ring NFA-based OPVs.
RESUMEN
The crystallographic orientation of polycrystalline perovskites is found to be strongly correlated with their intrinsic properties; therefore, it can be used to effectively enhance the performance of perovskite-based devices. Here, a facile way of manipulating the facet orientation of polycrystalline perovskite films in a controllable manner is reported. By incorporating a cross-linkable organic ligand into the perovskite precursor solution, the crystal orientation disorder can be reduced in the resultant perovskite films to exhibit the prominent (001) orientation with a preferred stacking mode. Moreover, the as-formed low-dimensional perovskites (LDPs) between the organic ligand and the excess lead iodide can passivate the defects around the grain boundaries. Consequently, highly efficient p-i-n structured perovskite solar cells (PSCs) can be made in both rigid and flexible forms from modified perovskites to show high power conversion efficiencies (PCE) of 24.12% and 23.23%, respectively. The devices also exhibit superior long-term stability in a humid environment (with T90 > 1000 h) and under thermal stress (retaining 87% of its initial PCE after 1000 h). More importantly, the ligand enables the derived LDPs to be crosslinked (under 254 nm UV illumination) to demonstrate excellent mechanical bending durability in flexible devices.
RESUMEN
Organic solar cells (OSCs) have advanced rapidly due to the development of new photovoltaic materials. However, the long-term stability of OSCs still poses a severe challenge for their commercial deployment. To address this issue, a dimer acceptor (dT9TBO) with flexible linker is developed for incorporation into small-molecule acceptors to form molecular alloy with enhanced intermolecular packing and suppressed molecular diffusion to stabilize active layer morphology. Consequently, the PM6 : Y6 : dT9TBO-based device displays an improved power conversion efficiency (PCE) of 18.41 % with excellent thermal stability and negligible decay after being aged at 65 °C for 1800â h. Moreover, the PM6 : Y6 : dT9TBO-based flexible OSC also exhibits excellent mechanical durability, maintaining 95 % of its initial PCE after being bended repetitively for 1500â cycles. This work provides a simple and effective way to fine-tune the molecular packing with stabilized morphology to overcome the trade-off between OSC efficiency and stability.
RESUMEN
Organic photovoltaics (OPV) are one of the most effective ways to harvest renewable solar energy, with the power conversion efficiency (PCE) of the devices soaring above 19 % when processed with halogenated solvents. The superior photocurrent of OPV over other emerging photovoltaics offers more opportunities to further improve the efficiency. Tailoring the absorption band of photoactive materials is an effective way to further enhance OPV photocurrent. However, the field has mostly been focusing on improving the near-infrared region photo-response, with the absorption shoulders in short-wavelength region (SWR) usually being neglected. Herein, by developing a series of non-fullerene acceptors (NFAs) with varied side-group conjugations, we observe an enhanced SWR absorption band with increased side-group conjugation length. The underpinning factors of how molecular structures and geometries improve SWR absorption are clearly elucidated through theoretical modelling and crystallography. Moreover, a clear relationship between the enhanced SWR absorption and reduced singlet-triplet energy gap is established, both of which are favorable for the OPV performance and can be tailored by rational structure design of NFAs. Finally, the rationally designed NFA, BO-TTBr, affords a decent PCE of 18.5 % when processed with a non-halogenated green solvent.
RESUMEN
ConspectusOrganic photovoltaics (OPVs) with a photoactive layer containing a blend of organic donor and acceptor species are considered to be a promising technology for clean energy owing to their unique flexible form factor and good solution processability that can potentially address the scalability challenges. The delicate designs of both donors and acceptors have significantly enhanced the power conversion efficiency of OPVs to more than 18%. Nonfullerene small-molecule acceptors (NFAs) have played a critical role in enhancing the short-circuit current density (JSC) by efficiently harvesting near-infrared (NIR) sunlight. To take full advantage of the abundant NIR photons, the optical band gap of NFAs should be further reduced to improve the performance of OPVs. Incorporating highly polarizable selenium atoms onto the backbone of organic conjugated materials has been proven to be an effective way to decrease their optical band gap. For example, a selenium-substituted NFA recently developed by our group has attained a JSC of approximate 27.5 mA cm-2 in OPV devices, surpassing those of most emerging photovoltaic systems. Inspired by this advance, we concentrate on the topic of selenium-containing materials in this Account to incite readers' interest in further exploring this series of materials.In this Account, we first compare the differences among chalcogen heterocycles and discuss the influence of fundamental electronic behavior on the collective photoelectrical properties of the resulting materials. The superior features of selenium-substituted materials are summarized as follows: (1) The large covalent radius of selenium can diminish the π-orbital overlap, rendering enhanced quinoidal resonance character and a narrowed optical band gap of resulting materials. (2) The selenium atom is more polarizable than sulfur owing to its larger and looser outermost electron cloud, enabling enhanced intermolecular Se-Se interaction and increased charge carrier mobility of relevant materials in the solid state. We then focus on summarizing the design rules for various categories of selenium-containing materials including polymer donors, small-molecule acceptors, and polymer acceptors, especially those composed of ladder-type polycyclic units. The motivation for incorporating selenium atoms into these materials and the structure-property relationships were thoroughly elucidated. Specifically, we discuss the changes in the optical band gap, charge carrier mobility, and molecular packing induced by selenium substitution and correlate the effects of these changes with the exciton behaviors, energy loss, and nanoscale film morphology of corresponding OPV devices. Furthermore, we point out the intrinsic stability of selenium-containing materials under maximum-power-point tracking and long-term photo- or thermostress and indicate their potential use in semitransparent and tandem solar cells. At the end, the prospect of future research focuses and the possible applications of selenium-containing materials in the OPV field are discussed.
RESUMEN
Recently, the strategy of polymerized small-molecule acceptors (PSMAs) has attracted extensive attention for applications in all-polymer solar cells (all-PSCs). Although side-chain engineering is considered as a simple and effective strategy for manipulating polymer properties, the corresponding effect on photovoltaic performance of PSMAs in all-PSCs has not been systemically investigated. Herein, a series of PSMAs based on the benzotriazole (BTz)-core fused SMAs with different N-alkyl chains including branched 2-butyloctyl, linear n-octyl, and methyl on the BTz unit, namely PZT-C12, PZT-C8, and PZT-C1, respectively, is presented. Comparative studies show that the size of alkyl chains has a significant impact on the solid-state behavior of PZT polymers, which in turn affects their light absorption and charge transporting capacities, and subsequently the all-PSC performances. When combining with the polymer donor PBDB-T, PZT-C1 affords a champion power conversion efficiency of 14.9%, compared to 13.1% of PZT-C12, and 13.8% of PZT-C8 in the resultant all-PSCs, mainly benefiting from its better crystallinity and the more favorable blend morphology. This work emphasizes the importance of optimizing side-chain substituents on PSMAs for improving the device efficiency of all-PSCs.
RESUMEN
Hybrid metal-halide perovskite solar cells (PVSCs) have drawn unprecedented attention during the last decade due to their superior photovoltaic performance, facile and low-cost fabrication, and potential for roll-to-roll mass production and application for portable devices. Through collective composition, interface, and process engineering, a comprehensive understanding of the structure-property relationship and carrier dynamics of perovskites has been established to help achieve a very high certified power conversion efficiency (PCE) of 25.5%. Apart from material properties, the modified heterojunction design and device configuration evolution also play crucial roles in enhancing the efficiency. The adoption and/or modification of heterojunction structures have been demonstrated to effectively suppress the carrier recombination and potential losses in PVSCs. Moreover, the employment of multijunction structures has been shown to reduce thermalization losses, achieving a high PCE of 29.52% in perovskite/silicon tandem solar cells. Therefore, understanding the evolution of the device configuration of PVSCs from single junction, heterojunction to multijunction designs is helpful for the researchers in this field to further boost the PCE beyond 30%. Herein, we summarize the evolution and progress of the single junction, heterojunction and multijunction designs for high-performance PVSCs. A comprehensive review of the fundamentals and working principles of these designs is presented. We first introduce the basic working principles of single junction PVSCs and the intrinsic properties (such as crystallinity and defects) in perovskite films. Afterwards, the progress of diverse heterojunction designs and perovskite-based multijunction solar cells is synopsized and reviewed. Meanwhile, the challenges and strategies to further enhance the performance are also summarized. At the end, the perspectives on the future development of perovskite-based solar cells are provided. We hope this review can provide the readers with a quick catchup on this emerging solution-processable photovoltaic technology, which is currently at the transition stage towards commercialization.
RESUMEN
Carbazole-derived self-assembled monolayers (SAMs) are promising hole-selective materials for inverted perovskite solar cells (PSCs). However, they often possess small dipoles which prohibit them from effectively modulating the workfunction of ITO substrate, limiting the PSC photovoltage. Moreover, their properties can be drastically affected by even subtle structural modifications, undermining the final PSC performance. Here, we designed two carbazole-derived SAMs, CbzPh and CbzNaph through asymmetric or helical π-expansion for improved molecular dipole moment and strengthened π-π interaction. The helical π-expanded CbzNaph has the largest dipole, forming densely packed and ordered monolayer, facilitated by the highly ordered assembly observed in its π-scaffold's single crystal. These synergistically modulate the perovskite crystallization atop and tune the ITO workfunction. Consequently, the champion PSC employing CbzNaph showed an excellent 24.1 % efficiency and improved stability.