Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066508

RESUMEN

Ovarian cancer (OC) metastases frequently occur through peritoneal dissemination, and they contribute to difficulties in treatment. While photodynamic therapy (PDT) has the potential to treat OC, its use is often limited by tissue penetration depth and tumor selectivity. Herein, we combined Cerenkov radiation (CR) emitted by 18F-FDG accumulated in tumors as an internal light source and several photosensitizer (PS) candidates with matched absorption bands, including Verteporfin (VP), Chlorin e6 (Ce6) and 5'-Aminolevulinic acid (5'-ALA), to evaluate the anti-tumor efficacy. The in vitro effect of CR-induced PDT (CR-PDT) was evaluated using a cell viability assay, and the efficiency of PS was assessed by measuring the singlet oxygen production. An intraperitoneal ES2 OC mouse model was used for in vivo evaluation of CR-PDT. Positron emission tomography (PET) imaging and bioluminescence-based imaging were performed to monitor the biologic uptake of 18F-FDG and the therapeutic effect. The in vitro studies demonstrated Ce6 and VP to be more effective PSs for CR-PDT. Moreover, VP was more efficient in the generation of singlet oxygen and continued for a long time when exposed to fluoro-18 (18F). Combining CR emitted by 18F-FDG and VP treatment not only significantly suppressed tumor growth, but also prolonged median survival times compared to either monotherapy.


Asunto(s)
Fluorodesoxiglucosa F18/uso terapéutico , Neoplasias Ováricas/terapia , Fotoquimioterapia , Radiación , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular Tumoral , Femenino , Inyecciones Intraperitoneales , Ratones Endogámicos BALB C
2.
Biomedicines ; 9(6)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073900

RESUMEN

The accumulation of extracellular ß-amyloid (Aß) plaques within the brain is unique to Alzheimer's disease (AD) and thought to induce synaptic deficits and neuronal loss. Optimal therapies should tackle the core AD pathophysiology and prevent the decline in memory and cognitive functions. This study aimed to evaluate the therapeutic performance of mesenchymal stem cell-derived exosomes (MSC-exosomes), which are secreted membranous elements encapsulating a variety of MSC factors, on AD. A human neural cell culture model with familial AD (FAD) mutations was established and co-cultured with purified MSC-exosomes. 2-[18F]Fluoro-2-deoxy-d-glucose ([18F]FDG) and novel object recognition (NOR) testing were performed before/after treatment to evaluate the therapeutic effect in vivo. The AD-related pathology and the expression of neuronal memory/synaptic plasticity-related genes were also evaluated. The results showed that MSC-exosomes reduced Aß expression and restored the expression of neuronal memory/synaptic plasticity-related genes in the cell model. [18F]FDG-PET imaging and cognitive assessment revealed a significant improvement in brain glucose metabolism and cognitive function in AD transgenic mice. The phase of neurons and astrocytes in the brain of AD mice were also found to be regulated after treatment with MSC-exosomes. Our study demonstrates the therapeutic mechanism of MSC-exosomes and provides an alternative therapeutic strategy based on cell-free MSC-exosomes for the treatment of AD.

3.
Int J Nanomedicine ; 16: 7813-7830, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880610

RESUMEN

INTRODUCTION: Osteoporosis is a result of an imbalance in bone remodeling. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been considered as a potentially promising treatment for osteoporosis. However, the therapeutic effect, genetic alterations, and in vivo behavior of exogenous EVs for osteoporosis in mice models remain poorly understood. METHODS: A multiplexed molecular imaging strategy was constructed by micro-positron emission tomography (µPET)/computed tomography (CT), µCT, and optical imaging modality which reflected the osteoblastic activity, microstructure, and in vivo behavior of EVs, respectively. RNA sequencing was used to analyze the cargo of EVs, and the bone tissues of ovariectomized (OVX) mice post EV treatment. RESULTS: The result of [18F]NaF µPET showed an increase in osteoblastic activity in the distal femur of EV-treated mice, and the bone structural parameters derived from µCT were also improved. In terms of in vivo behavior of exogenous EVs, fluorescent dye-labeled EVs could target the distal femur of mice, whereas the uptakes of bone tissues were not significantly different between OVX mice and healthy mice. RNA sequencing demonstrated upregulation of ECM-related genes, which might associate with the PI3K/AKT signaling pathway, in line with the results of microRNA analysis showing that mir-21, mir-29, mir-221, and let-7a were enriched in Wharton's jelly-MSC-EVs and correlated to the BMP and PI3K/AKT signaling pathways. CONCLUSION: The therapeutic effect of exogenous WJ-MSC-EVs in the treatment of osteoporosis was successfully assessed by a multiplexed molecular imaging strategy. The RNA sequencing demonstrated the possible molecular targets in the regulation of bone remodeling. The results highlight the novelty of diagnostic and therapeutic strategies of EV-based treatment for osteoporosis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , Gelatina de Wharton , Animales , Ratones , Imagen Molecular , Osteoporosis/diagnóstico por imagen , Osteoporosis/terapia , Fosfatidilinositol 3-Quinasas , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA