Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 115(5): 1394-1407, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243898

RESUMEN

Reductions in red to far-red ratio (R:FR) provide plants with an unambiguous signal of vegetational shade and are monitored by phytochrome photoreceptors. Plants integrate this information with other environmental cues to determine the proximity and density of encroaching vegetation. Shade-sensitive species respond to reductions in R:FR by initiating a suite of developmental adaptations termed shade avoidance. These include the elongation of stems to facilitate light foraging. Hypocotyl elongation is driven by increased auxin biosynthesis promoted by PHYTOCHROME INTERACTING FACTORs (PIF) 4, 5 and 7. UV-B perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor rapidly inhibits shade avoidance, in part by suppressing PIF4/5 transcript accumulation and destabilising PIF4/5 protein. Here, we show that longer-term inhibition of shade avoidance is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), which regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification. HY5 and HYH are elevated in UV-B and suppress the expression of XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes involved in cell wall loosening. They additionally increase expression GA2-OXIDASE1 (GA2ox1) and GA2ox2, encoding gibberellin catabolism enzymes that act redundantly to stabilise the PIF-inhibiting DELLA proteins. UVR8 therefore regulates temporally distinct signalling pathways to first rapidly inhibit and subsequently maintain suppression of shade avoidance following UV-B exposure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transducción de Señal/fisiología , Plantas/metabolismo , Fitocromo/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
2.
J Exp Bot ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38525857

RESUMEN

The photoreceptor UVR8 mediates many plant responses to UV-B and short wavelength UV-A light. UVR8 functions through interactions with other proteins which lead to extensive changes in gene expression. Interactions with particular proteins determine the nature of the response to UV-B. It is therefore important to understand the molecular basis of these interactions: how are different proteins able to bind to UVR8 and how is differential binding regulated? This concise review highlights recent developments in addressing these questions. Key advances are discussed with regard to: identification of proteins that interact with UVR8; the mechanism of UVR8 accumulation in the nucleus; the photoactivation of UVR8 monomer; the structural basis of interaction between UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins; the role of UVR8 phosphorylation in modulating interactions and responses to UV-B. Nevertheless, much remains to be understood and the need to extend future research to the growing list of interactors is emphasised.

3.
Mutagenesis ; 39(1): 13-23, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37555614

RESUMEN

Cadmium chloride (CdCl2) is a known genotoxic carcinogen, with a mechanism of action thought to partly involve the generation of reactive oxygen species (ROS). We applied here a multi-endpoint approach in vitro to explore the impact of CdCl2 on both the genome and on wider cell biology pathways relevant to cancer. Multi-endpoint approaches are believed to offer greater promise in terms of understanding the holistic effects of carcinogens in vitro. This richer understanding may help better classification of carcinogens as well as allowing detailed mechanisms of action to be identified. We found that CdCl2 caused DNA damage [micronuclei (MN)] in both TK6 and NH32 cells in a dose-dependent manner after 4 h exposure (plus 23 h recovery), with lowest observable effect levels (LOELs) for MN induction of 1 µM (TK6) and 1.6 µM (NH32). This DNA damage induction in TK6 cells was ROS dependent as pretreatment with the antioxidant N-Acetyl Cysteine (1 mM), abrogated this effect. However, 2',7'-dichlorofluorescin diacetate was not capable of detecting the ROS induced by CdCl2. The use of NH32 cells allowed an investigation of the role of p53 as they are a p53 null cell line derived from TK6. NH32 showed a 10-fold increase in MN in untreated cells and a similar dose-dependent effect after CdCl2 treatment. In TK6 cells, CdCl2 also caused activation of p53 (accumulation of total and phosphorylated p53), imposition of cell cycle checkpoints (G2/M) and intriguingly the production of smaller and more eccentric (elongated) cells. Overall, this multi-endpoint study suggests a carcinogenic mechanism of CdCl2 involving ROS generation, oxidative DNA damage and p53 activation, leading to cell cycle abnormalities and impacts of cell size and shape. This study shows how the integration of multiple cell biology endpoints studied in parallel in vitro can help mechanistic understanding of how carcinogens disrupt normal cell biology.


Asunto(s)
Cloruro de Cadmio , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Cadmio/toxicidad , Cloruro de Cadmio/metabolismo , Daño del ADN , Ciclo Celular , Carcinógenos/toxicidad
4.
Mutagenesis ; 39(2): 69-77, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38301659

RESUMEN

Chemical safety testing plays a crucial role in product and pharmacological development, as well as chemoprevention; however, in vitro genotoxicity safety tests do not always accurately predict the chemicals that will be in vivo carcinogens. If chemicals test positive in vitro for genotoxicity but negative in vivo, this can contribute to unnecessary testing in animals used to confirm erroneous in vitro positive results. Current in vitro tests typically evaluate only genotoxicity endpoints, which limits their potential to detect non-genotoxic carcinogens. The frequency of misleading in vitro positive results can be high, leading to a requirement for more informative in vitro tests. It is now recognized that multiple-endpoint genotoxicity testing may aid more accurate detection of carcinogens and non-carcinogens. The objective of this review was to evaluate the utility of our novel, multiple-endpoint in vitro test, which uses multiple cancer-relevant endpoints to predict carcinogenic potential. The tool assessed micronucleus frequency, p53 expression, p21 expression, mitochondrial respiration, cell cycle abnormalities and, uniquely, cell morphology changes in human lymphoblastoid cell lines, TK6 and MCL-5. The endpoints were used to observe cellular responses to 18 chemicals within the following categories: genotoxic carcinogens, non-genotoxic carcinogens, toxic non-carcinogens, and misleading in vitro positive and negative agents. The number of endpoints significantly altered for each chemical was considered, alongside the holistic Integrated Signature of Carcinogenicity score, derived from the sum of fold changes for all endpoints. Following the calculation of an overall score from these measures, carcinogens exhibited greater potency than non-carcinogens. Genotoxic carcinogens were generally more potent than non-genotoxic carcinogens. This novel approach therefore demonstrated potential for correctly predicting whether chemicals with unknown mechanism may be considered carcinogens. Overall, while further validation is recommended, the test demonstrates potential for the identification of carcinogenic compounds. Adoption of the approach could enable reduced animal use in carcinogenicity testing.


Asunto(s)
Carcinogénesis , Carcinógenos , Animales , Humanos , Carcinógenos/toxicidad , Pruebas de Carcinogenicidad/métodos , Pruebas de Mutagenicidad/métodos , Daño del ADN , Técnicas In Vitro
5.
Plant J ; 111(2): 583-594, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35608127

RESUMEN

The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor mediates plant responses to Ultraviolet-B (UV-B) wavelengths. The UVR8 dimer dissociates into monomers following UV-B photoreception, a process accompanied by conformational changes that facilitate interaction of UVR8 with proteins that initiate responses. However, the importance of particular amino acids in maintaining UVR8 conformation and modulating protein interactions is poorly understood. Here we examine the roles of cysteine amino acids C231 and C335 in UVR8 structure and function. UVR8C231S,C335S mutant protein forms dimers and monomerizes similarly to wild-type UVR8. UVR8C231S,C335S interacts with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) in plants to initiate photomorphogenic responses to UV-B, although the interaction is weaker when examined in yeast two-hybrid assays. Similarly, the interaction of UVR8C231S,C335S with REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins is weaker in both plants and yeast compared with wild-type UVR8. Re-dimerization of UVR8 in plants, which is mediated by RUP proteins, occurs with reduced efficiency in UVR8C231S,C335S . Fluorescence resonance energy transfer analysis indicates that UVR8C231S,C335S has an altered conformation in plants, in that the N- and C-termini appear closer together, which may explain the altered protein interactions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cisteína/metabolismo , Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Rayos Ultravioleta
6.
Mutagenesis ; 38(2): 93-99, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37006185

RESUMEN

Pancreatic cancer still has one of the worst prognoses of all solid malignancies, despite developments in cancer knowledge and care. Research into pancreatic cancer has not fully translated into clinical improvements and as a result, fewer than 1% of patients survive 10 years post-diagnosis. This bleak outlook for patients could be improved by earlier diagnosis. The human erythrocyte phosphatidylinositol glycan class A (PIG-A) assay monitors the mutation status of the X-linked PIG-A gene by measuring glycosyl phosphatidylinositol (GPI)-anchored proteins on the extracellular surface. We have previously identified an elevated PIG-A mutant frequency in oesophageal adenocarcinoma patients and here investigate whether this could be seen in a pancreatic cancer cohort, given the urgent need for novel pancreatic cancer biomarkers. In our pilot study, an elevated PIG-A mutant frequency (5.775 × 10-6 (95% CI 4.777-10) mutants per million) was seen in pancreatic cancer patients (n = 30) when compared to the non-cancer control group (n = 14) who had an erythrocyte mutant frequency of 4.211 × 10-6 (95% CI 1.39-5.16) mutants per million (p = 0.0052). A cut-off value of 4.7 mutants per million provided an AUROC of 0.7595 with a sensitivity of 70% and specificity of 78.57%. A secondary measure of DNA damage in an alternative blood cell population also showed an increase in peripheral lymphocytes using the cytokinesis-block micronucleus assay (p = 0.0164) (AUROC = 0.77, sensitivity = 72.22%, specificity = 72.73%). The micronucleus frequency and PIG-A status show some potential as blood-based biomarkers of pancreatic cancer, but further investigations of these DNA damage tests are required to assess their utility in pancreatic cancer diagnosis.


Asunto(s)
Glicosilfosfatidilinositoles , Neoplasias Pancreáticas , Humanos , Proyectos Piloto , Mutación , Daño del ADN/genética , Linfocitos , Pruebas de Micronúcleos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética
7.
Photochem Photobiol Sci ; 22(10): 2341-2356, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37505444

RESUMEN

UV-B radiation regulates numerous morphogenic, biochemical and physiological responses in plants, and can stimulate some responses typically associated with other abiotic and biotic stimuli, including invertebrate herbivory. Removal of UV-B from the growing environment of various plant species has been found to increase their susceptibility to consumption by invertebrate pests, however, to date, little research has been conducted to investigate the effects of UV-B on crop susceptibility to field pests. Here, we report findings from a multi-omic and genetic-based study investigating the mechanisms of UV-B-stimulated resistance of the crop, Brassica napus (oilseed rape), to herbivory from an economically important lepidopteran specialist of the Brassicaceae, Plutella xylostella (diamondback moth). The UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8), was not found to mediate resistance to this pest. RNA-Seq and untargeted metabolomics identified components of the sinapate/lignin biosynthetic pathway that were similarly regulated by UV-B and herbivory. Arabidopsis mutants in genes encoding two enzymes in the sinapate/lignin biosynthetic pathway, CAFFEATE O-METHYLTRANSFERASE 1 (COMT1) and ELICITOR-ACTIVATED GENE 3-2 (ELI3-2), retained UV-B-mediated resistance to P. xylostella herbivory. However, the overexpression of B. napus COMT1 in Arabidopsis further reduced plant susceptibility to P. xylostella herbivory in a UV-B-dependent manner. These findings demonstrate that overexpression of a component of the sinapate/lignin biosynthetic pathway in a member of the Brassicaceae can enhance UV-B-stimulated resistance to herbivory from P. xylostella.


Asunto(s)
Arabidopsis , Brassica napus , Mariposas Nocturnas , Animales , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Brassica napus/genética , Herbivoria , Lignina , Mariposas Nocturnas/fisiología , Plantas
8.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 179-187, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37329528

RESUMEN

The expression of six transmembrane epithelial antigen of the prostate (STEAP2) is increased in prostate cancer when compared to normal tissue, suggesting a role for STEAP2 in disease progression. This study aimed to determine whether targeting STEAP2 with an anti-STEAP2 polyclonal antibody (pAb) or CRISPR/Cas9 knockout influenced aggressive prostate cancer traits. Gene expression analysis of the STEAP gene family was performed in a panel of prostate cancer cell lines; C4-2B, DU145, LNCaP and PC3. The highest increases in STEAP2 gene expression were observed in C4-2B and LNCaP cells (p<0.001 and p<0.0001 respectively) when compared to normal prostate epithelial PNT2 cells. These cell lines were treated with an anti-STEAP2 pAb and their viability assessed. CRISPR/Cas9 technology was used to knockout STEAP2 from C4-2B and LNCaP cells and viability, proliferation, migration and invasion assessed. When exposed to an anti-STEAP2 pAb, cell viability significantly decreased (p<0.05). When STEAP2 was knocked out, cell viability and proliferation was significantly decreased when compared to wild-type cells (p<0.001). The migratory and invasive potential of knockout cells were also decreased. These data suggest that STEAP2 has a functional role in driving aggressive prostate cancer traits and could provide a novel therapeutic target for the treatment of prostate cancer.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Perfilación de la Expresión Génica , Línea Celular Tumoral
9.
Proc Natl Acad Sci U S A ; 116(4): 1116-1125, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30610174

RESUMEN

UVR8 is a plant photoreceptor protein that regulates photomorphogenic and protective responses to UV light. The inactive, homodimeric state absorbs UV-B light, resulting in dissociation into monomers, which are considered to be the active state and comprise a ß-propeller core domain and intrinsically disordered N- and C-terminal tails. The C terminus is required for functional binding to signaling partner COP1. To date, however, structural studies have only been conducted with the core domain where the terminal tails have been truncated. Here, we report structural investigations of full-length UVR8 using native ion mobility mass spectrometry adapted for photoactivation. We show that, while truncated UVR8 photoconverts from a single conformation of dimers to a single monomer conformation, the full-length protein exists in numerous conformational families. The full-length dimer adopts both a compact state and an extended state where the C terminus is primed for activation. In the monomer the extended C terminus destabilizes the core domain to produce highly extended yet stable conformations, which we propose are the fully active states that bind COP1. Our results reveal the conformational diversity of full-length UVR8. We also demonstrate the potential power of native mass spectrometry to probe functionally important structural dynamics of photoreceptor proteins throughout nature.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas Cromosómicas no Histona/química , Fotorreceptores de Plantas/química , Dominio Catalítico , Luz , Espectrometría de Masas/métodos , Proteínas de Plantas/química , Conformación Proteica , Rayos Ultravioleta
10.
Small ; 17(15): e2006298, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480476

RESUMEN

Nanomaterials are defined as materials with at least one dimension of 100 nm or less. Their small size confers unique properties that may alter the toxicity profile when compared to larger forms of the same material, requiring additional considerations for safety assessment. There has been a rise in the development of nanomaterials for many applications, and although traditional approaches for toxicity testing may address some of the new toxicity concerns, many may not be directly applicable to nanomaterials and new tools or approaches may need to be developed. Since nanomaterials can exist in many different forms, each of which may cause different adverse biological effects, reliance on traditional in vivo models for safety assessment will simply not be feasible or sustainable, given the volume of materials that may need to be tested. It is essential to consider and develop new in vitro methods that can be applied for hazard identification and risk assessment. Many challenges are associated with using alternative approaches to ensure they are as robust and reliable as traditional in vivo approaches, but by overcoming these issues and adopting new testing strategies there are opportunities to improve safety assessments and reduce the reliance on animal-based toxicity testing strategies.


Asunto(s)
Nanoestructuras , Pruebas de Toxicidad , Animales , Nanoestructuras/toxicidad , Medición de Riesgo
11.
Small ; 17(15): e2006055, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33448117

RESUMEN

Whilst the liver possesses the ability to repair and restore sections of damaged tissue following acute injury, prolonged exposure to engineered nanomaterials (ENM) may induce repetitive injury leading to chronic liver disease. Screening ENM cytotoxicity using 3D liver models has recently been performed, but a significant challenge has been the application of such in vitro models for evaluating ENM associated genotoxicity; a vital component of regulatory human health risk assessment. This review considers the benefits, limitations, and adaptations of specific in vitro approaches to assess DNA damage in the liver, whilst identifying critical advancements required to support a multitude of biochemical endpoints, focusing on nano(geno)toxicology (e.g., secondary genotoxicity, DNA damage, and repair following prolonged or repeated exposures).


Asunto(s)
Nanoestructuras , Daño del ADN , Humanos , Hígado , Nanoestructuras/toxicidad , Medición de Riesgo
12.
Small ; 17(15): e2002551, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32734718

RESUMEN

Few-layer graphene (FLG) has garnered much interest owing to applications in hydrogen storage and reinforced nanocomposites. Consequently, these engineered nanomaterials (ENMs) are in high demand, increasing occupational exposure. This investigation seeks to assess the inhalation hazard of industrially relevant FLG engineered with: (i) no surface functional groups (neutral), (ii) amine, and (iii) carboxyl group functionalization. A monoculture of human lung epithelial (16HBE14o- ) cells is exposed to each material for 24-h, followed by cytotoxicity and genotoxicity evaluation using relative population doubling (RPD) and the cytokinesis-blocked micronucleus (CBMN) assay, respectively. Neutral-FLG induces the greatest (two-fold) significant increase (p < 0.05) in micronuclei, whereas carboxyl-FLG does not induce significant (p < 0.05) genotoxicity. These findings correlate to significant (p < 0.05) concentration-dependent increases in interleukin (IL)-8, depletion of intracellular glutathione (rGSH) and a depletion in mitochondrial ATP production. Uptake of FLG is evaluated by transmission electron microscopy, whereby FLG particles are observed within membrane-bound vesicles in the form of large agglomerates (>1 µm diameter). The findings of the present study have demonstrated the capability of neutral-FLG and amine-FLG to induce genotoxicity in 16HBE14o- cells through primary indirect mechanisms, suggesting a possible role for carboxyl groups in scavenging radicals produced via oxidative stress.


Asunto(s)
Grafito , Nanocompuestos , Daño del ADN , Células Epiteliales , Proteínas Filagrina , Grafito/toxicidad , Humanos , Pulmón
13.
J Nanobiotechnology ; 19(1): 24, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468168

RESUMEN

BACKGROUND: Toxicological evaluation of engineered nanomaterials (ENMs) is essential for occupational health and safety, particularly where bulk manufactured ENMs such as few-layer graphene (FLG) are concerned. Additionally, there is a necessity to develop advanced in vitro models when testing ENMs to provide a physiologically relevant alternative to invasive animal experimentation. The aim of this study was to determine the genotoxicity of non-functionalised (neutral), amine- and carboxyl-functionalised FLG upon both human-transformed type-I (TT1) alveolar epithelial cell monocultures, as well as co-cultures of TT1 and differentiated THP-1 monocytes (d.THP-1 (macrophages)). RESULTS: In monocultures, TT1 and d.THP-1 macrophages showed a statistically significant (p < 0.05) cytotoxic response with each ENM following 24-h exposures. Monoculture genotoxicity measured by the in vitro cytokinesis blocked micronucleus (CBMN) assay revealed significant (p < 0.05) micronuclei induction at 8 µg/ml for amine- and carboxyl-FLG. Transmission electron microscopy (TEM) revealed ENMs were internalised by TT1 cells within membrane-bound vesicles. In the co-cultures, ENMs induced genotoxicity in the absence of cytotoxic effects. Co-cultures pre-exposed to 1.5 mM N-acetylcysteine (NAC), showed baseline levels of micronuclei induction, indicating that the genotoxicity observed was driven by oxidative stress. CONCLUSIONS: Therefore, FLG genotoxicity when examined in monocultures, results in primary-indirect DNA damage; whereas co-cultured cells reveal secondary mechanisms of DNA damage.


Asunto(s)
Daño del ADN/efectos de los fármacos , Grafito/toxicidad , Nanoestructuras/química , Células Epiteliales Alveolares , Animales , Diferenciación Celular , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Proteínas Filagrina , Humanos , Macrófagos/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Estrés Oxidativo/efectos de los fármacos , Células THP-1
14.
J Nanobiotechnology ; 19(1): 193, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183029

RESUMEN

BACKGROUND: With the continued integration of engineered nanomaterials (ENMs) into everyday applications, it is important to understand their potential for inducing adverse human health effects. However, standard in vitro hazard characterisation approaches suffer limitations for evaluating ENM and so it is imperative to determine these potential hazards under more physiologically relevant and realistic exposure scenarios in target organ systems, to minimise the necessity for in vivo testing. The aim of this study was to determine if acute (24 h) and prolonged (120 h) exposures to five ENMs (TiO2, ZnO, Ag, BaSO4 and CeO2) would have a significantly different toxicological outcome (cytotoxicity, (pro-)inflammatory and genotoxic response) upon 3D human HepG2 liver spheroids. In addition, this study evaluated whether a more realistic, prolonged fractionated and repeated ENM dosing regime induces a significantly different toxicity outcome in liver spheroids as compared to a single, bolus prolonged exposure. RESULTS: Whilst it was found that the five ENMs did not impede liver functionality (e.g. albumin and urea production), induce cytotoxicity or an IL-8 (pro-)inflammatory response, all were found to cause significant genotoxicity following acute exposure. Most statistically significant genotoxic responses were not dose-dependent, with the exception of TiO2. Interestingly, the DNA damage effects observed following acute exposures, were not mirrored in the prolonged exposures, where only 0.2-5.0 µg/mL of ZnO ENMs were found to elicit significant (p ≤ 0.05) genotoxicity. When fractionated, repeated exposure regimes were performed with the test ENMs, no significant (p ≥ 0.05) difference was observed when compared to the single, bolus exposure regime. There was < 5.0% cytotoxicity observed across all exposures, and the mean difference in IL-8 cytokine release and genotoxicity between exposure regimes was 3.425 pg/mL and 0.181%, respectively. CONCLUSION: In conclusion, whilst there was no difference between a single, bolus or fractionated, repeated ENM prolonged exposure regimes upon the toxicological output of 3D HepG2 liver spheroids, there was a difference between acute and prolonged exposures. This study highlights the importance of evaluating more realistic ENM exposures, thereby providing a future in vitro approach to better support ENM hazard assessment in a routine and easily accessible manner.


Asunto(s)
Daño del ADN/efectos de los fármacos , Hígado/patología , Nanoestructuras/administración & dosificación , Nanoestructuras/toxicidad , Albúminas , Proliferación Celular , Citocinas/metabolismo , Células Hep G2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hígado/metabolismo , Pruebas de Mutagenicidad , Tamaño de la Partícula , Urea
15.
Arch Toxicol ; 95(1): 321-336, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910239

RESUMEN

Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.


Asunto(s)
Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Determinación de Punto Final , Proyectos de Investigación , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Forma de la Célula/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Fosforilación , Medición de Riesgo , Proteína p53 Supresora de Tumor/metabolismo
16.
Small ; 16(36): e2002002, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32755066

RESUMEN

To elucidate the impact of human exposure to engineered nanomaterials, advanced in vitro models are a valid non-animal alternative. Despite significant gains over the last decade, implementation of these approaches remains limited. This work discusses the current state-of-the-art and how future developments can lead to advanced in vitro models better supporting nano-hazard assessment.


Asunto(s)
Exposición a Riesgos Ambientales , Nanoestructuras , Conducta de Reducción del Riesgo , Exposición a Riesgos Ambientales/prevención & control , Humanos , Modelos Biológicos , Nanoestructuras/toxicidad , Medición de Riesgo
17.
New Phytol ; 227(3): 857-866, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32255498

RESUMEN

The photoreceptor UVR8 mediates numerous photomorphogenic responses of plants to UV-B wavelengths by regulating transcription. Studies with purified UVR8 and seedlings not previously exposed to UV-B have generated a model for UVR8 action in which dimeric UVR8 rapidly monomerises in response to UV-B exposure to initiate signalling. However, the mechanism of UVR8 action in UV-B-acclimated plants growing under photoperiodic conditions, where UVR8 exists in a dimer/monomer photo-equilibrium, is poorly understood. We examined UVR8 dimer/monomer status, gene expression responses, amounts of key UVR8 signalling proteins and their interactions with UVR8 in UV-B-acclimated Arabidopsis. We show that in UV-B-acclimated plants UVR8 can mediate a response to a 15-fold increase in UV-B without any increase in abundance of UVR8 monomer. Following transfer to elevated UV-B, monomers show increased interaction with both COP1, to initiate signalling and RUP2, to maintain the photo-equilibrium when the dimer/monomer cycling rate increases. Native RUP1 is present in low abundance compared with RUP2. We present a model for UVR8 action in UV-B-acclimated plants growing in photoperiodic conditions that incorporates dimer and monomer photoreception, dimer/monomer cycling, abundance of native COP1 and RUP proteins, and interactions of the monomer population with COP1, RUP2 and potentially other proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona , Ubiquitina-Proteína Ligasas , Rayos Ultravioleta
18.
Plant Cell Environ ; 43(6): 1513-1527, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32167576

RESUMEN

The photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES 1 and 2 (CRYs) play major roles in the perception of UV-B (280-315 nm) and UV-A/blue radiation (315-500 nm), respectively. However, it is poorly understood how they function in sunlight. The roles of UVR8 and CRYs were assessed in a factorial experiment with Arabidopsis thaliana wild-type and photoreceptor mutants exposed to sunlight for 6 or 12 hr under five types of filters with cut-offs in UV and blue-light regions. Transcriptome-wide responses triggered by UV-B and UV-A wavelengths shorter than 350 nm (UV-Asw ) required UVR8 whereas those induced by blue and UV-A wavelengths longer than 350 nm (UV-Alw ) required CRYs. UVR8 modulated gene expression in response to blue light while lack of CRYs drastically enhanced gene expression in response to UV-B and UV-Asw . These results agree with our estimates of photons absorbed by these photoreceptors in sunlight and with in vitro monomerization of UVR8 by wavelengths up to 335 nm. Motif enrichment analysis predicted complex signaling downstream of UVR8 and CRYs. Our results highlight that it is important to use UV waveband definitions specific to plants' photomorphogenesis as is routinely done in the visible region.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas Cromosómicas no Histona/metabolismo , Criptocromos/metabolismo , Rayos Ultravioleta , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Motivos de Nucleótidos/genética , Fotones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/metabolismo
19.
Chem Res Toxicol ; 33(5): 1061-1073, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32307980

RESUMEN

Human exposure to engineered nanomaterials (ENMs) is inevitable due to the plethora of applications for which they are being manufactured and integrated within. ENMs demonstrate plentiful advantages in terms of industrial approaches as well as from a consumer perspective. However, despite such positives, doubts remain over the human health implications of ENM exposure. In light of the increased research focus upon the potential effects of ENM exposure to human health in recent decades, questions still remain regarding the safety of these highly advanced, precision-tuned physical entities. The risk of short-term, high-dose exposure to humans is considered relatively low, although this has formed the direction of the hazard-assessment community since the turn of the 21st century. However, the possibility of humans being exposed repeatedly over a long period of time to a low-dose of ENMs of varying physicochemical characteristics is of significant concern, and thus, industry, government, academic, and consumer agencies are only now beginning to consider this. Notably, when considering the human health implications of such low-dose, long-term, repeated exposure scenarios, the impact of ENMs upon the human immune system is of primary importance. However, there remains a real need to understand the impact of ENMs upon the human immune system, especially the innate immune system, at all stages of life, given exposure to nanosized particles begins before birth, that is, of the fetus. Therefore, the purpose of this perspective is to summarize what is currently known regarding ENM exposure of different components of the innate immune system and identify knowledge gaps that should be addressed if we are to fully deduce the impact of ENM exposure on innate immune function.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Nanoestructuras/efectos adversos , Humanos
20.
Mutagenesis ; 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043963

RESUMEN

It is well understood that poor diet and lifestyle choices can increase the risk of cancer. It is also well documented that cancer is a disease of DNA mutations, with mutations in key genes driving carcinogenesis. Measuring these mutations in a minimally invasive way may be informative as to which exposures are harmful and thus allow us to introduce primary preventative measures, in a bid to reduce cancer incidences. Here, we have measured mutations in the phosphatidylinositol glycan class A (PIG-A) gene in erythrocytes from healthy volunteers (n = 156) and from non-cancer patients attending the local endoscopy department (n = 144). The X-linked PIG-A gene encodes an enzyme involved in glycosylphosphatidylinositol (GPI) anchor synthesis. A silencing mutation in which leads to the absence of GPI anchors on the extracellular surface which can be rapidly assessed using flow cytometry. The background level of PIG-A mutant erythrocytes was 2.95 (95% CI: 2.59-3.67) mutant cells (10-6). Older age increased mutant cell frequency (P < 0.001). There was no difference in mutant cell levels between males and females (P = 0.463) or smokers and non-smokers (P = 0.186). In the endoscopy group, aspirin users had lower mutant frequencies (P = 0.001). Further information on diet and exercise was available for the endoscopy patient group alone, where those with a higher health promotion index score had lower mutant frequencies (P = 0.011). Higher dietary intake of vegetables reduced mutant cell levels (P = 0.022). Participants who exercised for at least 1 h a week appeared to have reduced mutant frequencies than those who did not exercise, although this was not statistically significant (P = 0.099). This low background level of mutant erythrocytes in a population makes this assay an attractive tool to monitor exposures such as those associated with lifestyles and diet, as demonstrated here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA