Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cell ; 158(3): 549-63, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25042851

RESUMEN

Selective ubiquitin-dependent autophagy plays a pivotal role in the elimination of protein aggregates, assemblies, or organelles and counteracts the cytotoxicity of proteins linked to neurodegenerative diseases. Following substrate ubiquitylation, the cargo is delivered to autophagosomes involving adaptors like human p62 that bind ubiquitin and the autophagosomal ubiquitin-like protein Atg8/LC3; however, whether similar pathways exist in lower eukaryotes remained unclear. Here, we identify by a screen in yeast a new class of ubiquitin-Atg8 adaptors termed CUET proteins, comprising the ubiquitin-binding CUE-domain protein Cue5 from yeast and its human homolog Tollip. Cue5 collaborates with Rsp5 ubiquitin ligase, and the corresponding yeast mutants accumulate aggregation-prone proteins and are vulnerable to polyQ protein expression. Similarly, Tollip depletion causes cytotoxicity toward polyQ proteins, whereas Tollip overexpression clears human cells from Huntington's disease-linked polyQ proteins by autophagy. We thus propose that CUET proteins play a critical and ancient role in autophagic clearance of cytotoxic protein aggregates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia , Humanos , Enfermedad de Huntington/metabolismo , Péptidos/metabolismo , Ubiquitinación
2.
Cell ; 158(2): 327-338, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24998930

RESUMEN

Toxic DNA-protein crosslinks (DPCs) arise by ionizing irradiation and UV light, are particularly caused by endogenously produced reactive compounds such as formaldehyde, and also occur during compromised topoisomerase action. Although nucleotide excision repair and homologous recombination contribute to cell survival upon DPCs, hardly anything is known about mechanisms that target the protein component of DPCs directly. Here, we identify the metalloprotease Wss1 as being crucial for cell survival upon exposure to formaldehyde and topoisomerase 1-dependent DNA damage. Yeast mutants lacking Wss1 accumulate DPCs and exhibit gross chromosomal rearrangements. Notably, in vitro assays indicate that substrates such as topoisomerase 1 are processed by the metalloprotease directly and in a DNA-dependent manner. Thus, our data suggest that Wss1 contributes to survival of DPC-harboring cells by acting on DPCs proteolytically. We propose that DPC proteolysis enables repair of these unique lesions via downstream canonical DNA repair pathways.


Asunto(s)
Reparación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Daño del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Formaldehído , Sumoilación , Proteína que Contiene Valosina
3.
Mol Cell ; 80(5): 764-778.e7, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33207182

RESUMEN

Autophagy eliminates cytoplasmic content selected by autophagy receptors, which link cargo to the membrane-bound autophagosomal ubiquitin-like protein Atg8/LC3. Here, we report a selective autophagy pathway for protein condensates formed by endocytic proteins in yeast. In this pathway, the endocytic protein Ede1 functions as a selective autophagy receptor. Distinct domains within Ede1 bind Atg8 and mediate phase separation into condensates. Both properties are necessary for an Ede1-dependent autophagy pathway for endocytic proteins, which differs from regular endocytosis and does not involve other known selective autophagy receptors but requires the core autophagy machinery. Cryo-electron tomography of Ede1-containing condensates, at the plasma membrane and in autophagic bodies, shows a phase-separated compartment at the beginning and end of the Ede1-mediated selective autophagy route. Our data suggest a model for autophagic degradation of macromolecular protein complexes by the action of intrinsic autophagy receptors.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia , Autofagia , Endocitosis , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Microscopía por Crioelectrón , Unión Proteica , Proteolisis , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nat Rev Mol Cell Biol ; 16(8): 455-60, 2015 08.
Artículo en Inglés | MEDLINE | ID: mdl-26130008

RESUMEN

DNA-protein crosslinks (DPCs) are highly toxic DNA adducts, but whether dedicated DPC-repair mechanisms exist was until recently unknown. This has changed with discoveries made in yeast and Xenopus laevis that revealed a protease-based DNA-repair pathway specific for DPCs. Importantly, mutations in the gene encoding the putative human homologue of a yeast DPC protease cause a human premature ageing and cancer predisposition syndrome. Thus, DPC repair is a previously overlooked genome-maintenance mechanism that may be essential for tumour suppression.


Asunto(s)
Aductos de ADN/genética , Reparación del ADN , Animales , Aductos de ADN/metabolismo , Inestabilidad Genómica , Humanos , Péptido Hidrolasas/fisiología
5.
Cell ; 151(4): 807-820, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23122649

RESUMEN

Protein modification by SUMO affects a wide range of protein substrates. Surprisingly, although SUMO pathway mutants display strong phenotypes, the function of individual SUMO modifications is often enigmatic, and SUMOylation-defective mutants commonly lack notable phenotypes. Here, we use DNA double-strand break repair as an example and show that DNA damage triggers a SUMOylation wave, leading to simultaneous multisite modifications of several repair proteins of the same pathway. Catalyzed by a DNA-bound SUMO ligase and triggered by single-stranded DNA, SUMOylation stabilizes physical interactions between the proteins. Notably, only wholesale elimination of SUMOylation of several repair proteins significantly affects the homologous recombination pathway by considerably slowing down DNA repair. Thus, SUMO acts synergistically on several proteins, and individual modifications only add up to efficient repair. We propose that SUMOylation may thus often target a protein group rather than individual proteins, whereas localized modification enzymes and highly specific triggers ensure specificity.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/metabolismo , Sumoilación , Roturas del ADN de Cadena Simple , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Rev Mol Cell Biol ; 15(6): 369-83, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24824069

RESUMEN

Homologous recombination is crucial for genome stability and for genetic exchange. Although our knowledge of the principle steps in recombination and its machinery is well advanced, homology search, the critical step of exploring the genome for homologous sequences to enable recombination, has remained mostly enigmatic. However, recent methodological advances have provided considerable new insights into this fundamental step in recombination that can be integrated into a mechanistic model. These advances emphasize the importance of genomic proximity and nuclear organization for homology search and the critical role of homology search mediators in this process. They also aid our understanding of how homology search might lead to unwanted and potentially disease-promoting recombination events.


Asunto(s)
Cromosomas/genética , Daño del ADN , Reparación del ADN , Inestabilidad Genómica/genética , Recombinación Genética/genética , Animales , Humanos
7.
Cell ; 141(2): 255-67, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20403322

RESUMEN

Damaged DNA templates provide an obstacle to the replication fork and can cause genome instability. In eukaryotes, tolerance to damaged DNA is mediated largely by the RAD6 pathway involving ubiquitylation of the DNA polymerase processivity factor PCNA. Whereas monoubiquitylation of PCNA mediates error-prone translesion synthesis (TLS), polyubiquitylation triggers an error-free pathway. Both branches of this pathway are believed to occur in S phase in order to ensure replication completion. However, we found that limiting TLS or the error-free pathway to the G2/M phase of the cell-cycle efficiently promote lesion tolerance. Thus, our findings indicate that both branches of the DNA damage tolerance pathway operate effectively after chromosomal replication, outside S phase. We therefore propose that the RAD6 pathway acts on single-stranded gaps left behind newly restarted replication forks.


Asunto(s)
Reparación del ADN , Replicación del ADN , Fase S , Saccharomyces cerevisiae/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Redes y Vías Metabólicas , Antígeno Nuclear de Célula en Proliferación/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
8.
Mol Cell ; 67(3): 423-432.e4, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28712727

RESUMEN

Accurate pre-mRNA splicing is needed for correct gene expression and relies on faithful splice site recognition. Here, we show that the ubiquitin-like protein Hub1 binds to the DEAD-box helicase Prp5, a key regulator of early spliceosome assembly, and stimulates its ATPase activity thereby enhancing splicing and relaxing fidelity. High Hub1 levels enhance splicing efficiency but also cause missplicing by tolerating suboptimal splice sites and branchpoint sequences. Notably, Prp5 itself is regulated by a Hub1-dependent negative feedback loop. Since Hub1-mediated splicing activation induces cryptic splicing of Prp5, it also represses Prp5 protein levels and thus curbs excessive missplicing. Our findings indicate that Hub1 mediates enhanced, but error-prone splicing, a mechanism that is tightly controlled by a feedback loop of PRP5 cryptic splicing activation.


Asunto(s)
Ligasas/metabolismo , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , Empalme del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Empalmosomas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Hidrólisis , Ligasas/química , Ligasas/genética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Precursores del ARN/genética , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Empalmosomas/genética , Relación Estructura-Actividad , Factores de Tiempo
9.
EMBO J ; 38(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31015336

RESUMEN

Chromatin is a highly regulated environment, and protein association with chromatin is often controlled by post-translational modifications and the corresponding enzymatic machinery. Specifically, SUMO-targeted ubiquitin ligases (STUbLs) have emerged as key players in nuclear quality control, genome maintenance, and transcription. However, how STUbLs select specific substrates among myriads of SUMOylated proteins on chromatin remains unclear. Here, we reveal a remarkable co-localization of the budding yeast STUbL Slx5/Slx8 and ubiquitin at seven genomic loci that we term "ubiquitin hotspots". Ubiquitylation at these sites depends on Slx5/Slx8 and protein turnover on the Cdc48 segregase. We identify the transcription factor-like Ymr111c/Euc1 to associate with these sites and to be a critical determinant of ubiquitylation. Euc1 specifically targets Slx5/Slx8 to ubiquitin hotspots via bipartite binding of Slx5 that involves the Slx5 SUMO-interacting motifs and an additional, novel substrate recognition domain. Interestingly, the Euc1-ubiquitin hotspot pathway acts redundantly with chromatin modifiers of the H2A.Z and Rpd3L pathways in specific stress responses. Thus, our data suggest that STUbL-dependent ubiquitin hotspots shape chromatin during stress adaptation.


Asunto(s)
Adaptación Fisiológica , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Adaptación Fisiológica/genética , Sitios de Unión , Ensamble y Desensamble de Cromatina/genética , Genoma Fúngico , Organismos Modificados Genéticamente , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Estrés Fisiológico/genética , Sumoilación , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
10.
Cell ; 132(5): 832-45, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18329369

RESUMEN

Cytokinesis involves the formation of a cleavage furrow, followed by abscission, the cutting of the midbody channel, the final bridge between dividing cells. Recently, the midbody ring became known as central for abscission, but its regulation remains enigmatic. Here, we identify BRUCE, a 528 kDa multifunctional protein, which processes ubiquitin-conjugating activity, as a major regulator of abscission. During cytokinesis, BRUCE moves from the vesicular system to the midbody ring and serves as a platform for the membrane delivery machinery and mitotic regulators. Depletion of BRUCE in cell cultures causes defective abscission and cytokinesis-associated apoptosis, accompanied by a block of vesicular targeting and defective formation of the midbody and the midbody ring. Notably, ubiquitin relocalizes from midbody microtubules to the midbody ring during cytokinesis, and depletion of BRUCE disrupts this process. We propose that BRUCE coordinates multiple steps required for abscission and that ubiquitylation may be a crucial trigger.


Asunto(s)
Citocinesis , Proteínas Inhibidoras de la Apoptosis/metabolismo , Apoptosis , Línea Celular , Endosomas/química , Células HeLa , Humanos , Proteínas Inhibidoras de la Apoptosis/análisis , Membranas Intracelulares/química , Ubiquitina/análisis , Ubiquitina/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rab/metabolismo
11.
J Cell Sci ; 133(24)2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33262311

RESUMEN

Misassembled nuclear pore complexes (NPCs) are removed by sealing off the surrounding nuclear envelope (NE), which is conducted by the endosomal sorting complexes required for transport (ESCRT) machinery. Recruitment of ESCRT proteins to the NE is mediated by the interaction between the ESCRT member Chm7 and the inner nuclear membrane protein Heh1, which belongs to the conserved LEM family. Increased ESCRT recruitment results in excessive membrane scission at damage sites but its regulation remains poorly understood. Here, we show that Hub1-mediated alternative splicing of HEH1 pre-mRNA, resulting in production of its shorter form Heh1-S, is critical for the integrity of the NE in Saccharomyces cerevisiae ESCRT-III mutants lacking Hub1 or Heh1-S display severe growth defects and accumulate improperly assembled NPCs. This depends on the interaction of Chm7 with the conserved MSC domain, which is only present in the longer variant Heh1-L. Heh1 variants assemble into heterodimers, and we demonstrate that a unique splice segment in Heh1-S suppresses growth defects associated with the uncontrolled interaction between Heh1-L and Chm7. Together, our findings reveal that Hub1-mediated splicing generates Heh1-S to regulate ESCRT recruitment to the NE.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Ligasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Annu Rev Genet ; 47: 167-86, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24016193

RESUMEN

Reversible modification of proteins by SUMO (small ubiquitin-like modifier) affects a large number of cellular processes. In striking contrast to the related ubiquitin pathway, only a few enzymes participate in the SUMO system, although this pathway has numerous substrates as well. Emerging evidence suggests that SUMOylation frequently targets entire groups of physically interacting proteins rather than individual proteins. Protein-group SUMOylation appears to be triggered by recruitment of SUMO ligases to preassembled protein complexes. Because SUMOylation typically affects groups of proteins that bear SUMO-interaction motifs (SIMs), protein-group SUMOylation may foster physical interactions between proteins through multiple SUMO-SIM interactions. Individual SUMO modifications may act redundantly or additively, yet they may mediate dedicated functions as well. In this review, we focus on the unorthodox principles of this pathway and give examples for SUMO-controlled nuclear activities. We propose that collective SUMOylation is typical for nuclear assemblies and argue that SUMO serves as a distinguishing mark for functionally engaged protein fractions.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas/metabolismo , Sumoilación/fisiología , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/ultraestructura , Reparación del ADN/fisiología , Enzimas/metabolismo , Humanos , Lisina/metabolismo , Modelos Biológicos , Complejos Multiproteicos , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Mapeo de Interacción de Proteínas , Proteómica , Ribosomas/metabolismo , Especificidad por Sustrato , Sumoilación/genética , Telómero/metabolismo , Homeostasis del Telómero/fisiología , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína que Contiene Valosina
13.
Mol Cell ; 50(2): 261-72, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23523370

RESUMEN

Homologous recombination (HR) is crucial for genetic exchange and accurate repair of DNA double-strand breaks and is pivotal for genome integrity. HR uses homologous sequences for repair, but how homology search, the exploration of the genome for homologous DNA sequences, is conducted in the nucleus remains poorly understood. Here, we use time-resolved chromatin immunoprecipitations of repair proteins to monitor homology search in vivo. We found that homology search proceeds by a probing mechanism, which commences around the break and samples preferentially on the broken chromosome. However, elements thought to instruct chromosome loops mediate homology search shortcuts, and centromeres, which cluster within the nucleus, may facilitate homology search on other chromosomes. Our study thus reveals crucial parameters for homology search in vivo and emphasizes the importance of linear distance, chromosome architecture, and proximity for recombination efficiency.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Núcleo Celular/metabolismo , Cromosomas Fúngicos/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Genes del Tipo Sexual de los Hongos , Histonas/metabolismo , Unión Proteica , Recombinasa Rad51/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico
14.
Mol Cell ; 49(3): 536-46, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23260657

RESUMEN

Damaged DNA is an obstacle during DNA replication and a cause of genome instability and cancer. To bypass this problem, eukaryotes activate DNA damage tolerance (DDT) pathways that involve ubiquitylation of the DNA polymerase clamp proliferating cell nuclear antigen (PCNA). Monoubiquitylation of PCNA mediates an error-prone pathway by recruiting translesion polymerases, whereas polyubiquitylation activates an error-free pathway that utilizes undamaged sister chromatids as templates. The error-free pathway involves recombination-related mechanisms; however, the factors that act along with polyubiquitylated PCNA remain largely unknown. Here we report that the PCNA-related 9-1-1 complex, which is typically linked to checkpoint signaling, participates together with Exo1 nuclease in error-free DDT. Notably, 9-1-1 promotes template switching in a manner that is distinct from its canonical checkpoint functions and uncoupled from the replication fork. Our findings thus reveal unexpected cooperation in the error-free pathway between the two related clamps and indicate that 9-1-1 plays a broader role in the DNA damage response than previously assumed.


Asunto(s)
Daño del ADN , Complejos Multiproteicos/metabolismo , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Exodesoxirribonucleasas/metabolismo , Fase G2 , Pruebas Genéticas , Mitosis , Modelos Biológicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
15.
16.
Trends Biochem Sci ; 40(2): 67-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25496645

RESUMEN

DNA-protein crosslinks (DPCs) are highly toxic DNA lesions because they interfere with DNA transactions. The recent discovery of a yeast protease that processes DPCs proteolytically raises the question whether DPC proteases also exist in higher eukaryotes. We argue here that the yeast enzyme, Wss1 (weak suppressor of smt3), is a member of a protease family whose mammalian representative is Spartan (SprT-like domain-containing protein)/DVC1 (DNA damage protein targeting VCP). DPC proteases may thus be common to all eukaryotes where they function as novel guardians of the genome.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Animales , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Biol Chem ; 293(2): 599-609, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29183993

RESUMEN

Modification by the ubiquitin-like protein SUMO affects hundreds of cellular substrate proteins and regulates a wide variety of physiological processes. While the SUMO system appears to predominantly target nuclear proteins and, to a lesser extent, cytosolic proteins, hardly anything is known about the SUMOylation of proteins targeted to membrane-enclosed organelles. Here, we identify a large set of structurally and functionally unrelated mitochondrial proteins as substrates of the SUMO pathway in yeast. We show that SUMO modification of mitochondrial proteins does not rely on mitochondrial targeting and, in fact, is strongly enhanced upon import failure, consistent with the modification occurring in the cytosol. Moreover, SUMOylated forms of mitochondrial proteins particularly accumulate in HSP70- and proteasome-deficient cells, suggesting that SUMOylation participates in cellular protein quality control. We therefore propose that SUMO serves as a mark for nonfunctional mitochondrial proteins, which only sporadically arise in unstressed cells but strongly accumulate upon defective mitochondrial import and impaired proteostasis. Overall, our findings provide support for a role of SUMO in the cytosolic response to aberrant proteins.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte Biológico/fisiología , Microscopía Fluorescente , Proteostasis , Saccharomyces cerevisiae/metabolismo , Sumoilación
18.
EMBO J ; 33(4): 327-40, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24473148

RESUMEN

DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination-mediated (error-free) and translesion synthesis-mediated (error-prone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication-associated lesions into the error-free DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C-terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication-associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability.


Asunto(s)
Cromosomas Fúngicos/ultraestructura , Daño del ADN , ADN de Hongos/genética , Proteínas del Grupo de Alta Movilidad/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Cromátides/genética , Cromátides/ultraestructura , Cromatina/ultraestructura , Cromosomas Fúngicos/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Cruciforme , ADN de Hongos/efectos de los fármacos , Inestabilidad Genómica , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/genética , Metilmetanosulfonato/farmacología , Mutágenos/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación A/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
19.
Nature ; 474(7350): 173-8, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21614000

RESUMEN

Alternative splicing of pre-messenger RNAs diversifies gene products in eukaryotes and is guided by factors that enable spliceosomes to recognize particular splice sites. Here we report that alternative splicing of Saccharomyces cerevisiae SRC1 pre-mRNA is promoted by the conserved ubiquitin-like protein Hub1. Structural and biochemical data show that Hub1 binds non-covalently to a conserved element termed HIND, which is present in the spliceosomal protein Snu66 in yeast and mammals, and Prp38 in plants. Hub1 binding mildly alters spliceosomal protein interactions and barely affects general splicing in S. cerevisiae. However, spliceosomes that lack Hub1, or are defective in Hub1-HIND interaction, cannot use certain non-canonical 5' splice sites and are defective in alternative SRC1 splicing. Hub1 confers alternative splicing not only when bound to HIND, but also when experimentally fused to Snu66, Prp38, or even the core splicing factor Prp8. Our study indicates a novel mechanism for splice site utilization that is guided by non-covalent modification of the spliceosome by an unconventional ubiquitin-like modifier.


Asunto(s)
Empalme Alternativo , Regulación Fúngica de la Expresión Génica , Ligasas/metabolismo , Sitios de Empalme de ARN/genética , ARN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Eliminación de Gen , Humanos , Ligasas/deficiencia , Ligasas/genética , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/deficiencia , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U5/deficiencia , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/deficiencia , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Empalmosomas/química , Empalmosomas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/deficiencia , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinas
20.
Mol Cell ; 33(3): 335-43, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19217407

RESUMEN

DNA double-strand breaks (DSBs) are acutely hazardous for cells, as they can cause genome instability. DSB repair involves the sequential recruitment of repair factors to the DSBs, followed by Rad51-mediated homology probing, DNA synthesis, and ligation. However, little is known about how cells react if no homology is found and DSBs persist. Here, by monitoring a single persistent DNA break, we show that, following DNA resection and RPA recruitment, Rad51 spreads chromosome-wide bidirectionally from the DSB but selectively only on the broken chromosome. Remarkably, the persistent DSB is later fixed to the nuclear periphery in a process that requires Rad51, the histone variant H2A.Z, its SUMO modification, and the DNA-damage checkpoint. Indeed, H2A.Z is deposited close to the break early but transiently and directs DNA resection, single DSB-induced checkpoint activation, and DSB anchoring. Thus, a persistent DSB induces a multifaceted response, which is linked to a specific chromatin mark.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , Histonas/metabolismo , Recombinasa Rad51/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN de Hongos/análisis , Membrana Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA