Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 24(22): 25684-25696, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828504

RESUMEN

We propose and analyze a scheme for active switching and spectral tuning of mid-infrared Fano resonances. We consider dielectric resonators made of semiconductor cylinder arrays and block pairs, and theoretically investigate their optical response change due to carrier generation. Owing to sharp optical resonances in these structures and large dielectric constant variations with carrier densities, the significant spectral tuning of Fano resonances is achievable. Furthermore, selective optical pumping in coupled semiconductor structures can even enable dynamic switching of Fano resonances. This leads to a drastic change in the scattering spectra as well as in the near-field intensity. We also observe a stark difference between Fano resonances in cylinder arrays and block pairs. To understand this unusual behavior, we adopt the two coupled oscillator model, and extract the relevant Fano resonance parameters that explain this difference. Our findings and in-depth analyses can be useful for molecular sensors and switching devices in the technologically important mid-infrared spectral region.

2.
Nat Commun ; 14(1): 8412, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110407

RESUMEN

The shear-rolling process is a promising directed self-assembly method that can produce high-quality sub-10 nm block copolymer line-space patterns cost-effectively and straightforwardly over a large area. This study presents a high temperature (280 °C) and rapid (~0.1 s) shear-rolling process that can achieve a high degree of orientation in a single process while effectively preventing film delamination, that can be applied to large-area continuous processes. By minimizing adhesion, normal forces, and ultimate shear strain of the polydimethylsiloxane pad, shearing was successfully performed without peeling up to 280 °C at which the chain mobility significantly increases. This method can be utilized for various high-χ block copolymers and surface neutralization processes. It enables the creation of block copolymer patterns with a half-pitch as small as 8 nm in a unidirectional way. Moreover, the 0.1-second rapid shear-rolling was successfully performed on long, 3-inch width polyimide flexible films to validate its potential for the roll-to-roll process.

3.
Sci Rep ; 11(1): 22817, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819584

RESUMEN

Spoof surface plasmons in corrugated metal surfaces allow tight field confinement and guiding even at low frequencies and are promising for compact microwave photonic devices. Here, we use metal-ink printing on flexible substrates to construct compact spoof plasmon resonators. We clearly observe multipole resonances in the microwave frequencies and demonstrate that they are still maintained even under significant bending. Moreover, by combining two resonators of slightly different sizes, we demonstrate spectral filtering via the Vernier effect. We selectively address a target higher-order resonance while suppressing the other modes. Finally, we investigate the index-sensing capability of printed plasmonic resonators. In the Vernier structure, we can control the resonance amplitude and frequency by adjusting a resonance overlap between two coupled resonators. The transmission amplitude can be maximized at a target refractive index, and this can provide more functionalities and increased design flexibility. The metal-ink printing of microwave photonic structures can be applied to various flexible devices. Therefore, we expect that the compact, flexible plasmonic structures demonstrated in this study may be useful for highly functional elements that can enable tight field confinement and manipulation.

4.
Sci Rep ; 10(1): 6258, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277119

RESUMEN

Four-dimensional (4D) printing can add active and responsive functions to three-dimensional (3D) printed objects in response to various external stimuli. Light, among others, has a unique advantage of remotely controlling structural changes to obtain predesigned shapes. In this study, we demonstrate multicolor 4D printing of shape-memory polymers (SMPs). Using color-dependent selective light absorption and heating in multicolor SMP composites, we realize remote actuation with light illumination. We experimentally investigate the temperature changes in colored SMPs and observe a clear difference between the different colors. We also present simulations and analytical calculations to theoretically model the structural variations in multicolor composites. Finally, we consider a multicolor hinged structure and demonstrate the multistep actuation by changing the color of light and duration of illumination. 4D printing can allow complex, multicolor geometries with predesigned responses. Moreover, SMPs can be reused multiple times for thermal actuation by simply conducting thermomechanical programming again. Therefore, 4D printing of multicolor SMP composites have unique merits for light-induced structural changes. Our study indicates that multicolor 4D printing of SMPs are promising for various structural changes and remote actuation.

5.
Sci Rep ; 9(1): 324, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674968

RESUMEN

Three-dimensional (3D) printing is ideal for the fabrication of various customized 3D components with fine details and material-design complexities. However, most components fabricated so far have been static structures with fixed shapes and functions. Here we introduce bistability to 3D printing to realize highly-controlled, reconfigurable structures. Particularly, we demonstrate 3D printing of twisting and rotational bistable structures. To this end, we have introduced special joints to construct twisting and rotational structures without post-assembly. Bistability produces a well-defined energy diagram, which is important for precise motion control and reconfigurable structures. Therefore, these bistable structures can be useful for simplified motion control in actuators or for mechanical switches. Moreover, we demonstrate tunable bistable components exploiting shape memory polymers. We can readjust the bistability-energy diagram (barrier height, slope, displacement, symmetry) after printing and achieve tunable bistability. This tunability can significantly increase the use of bistable structures in various 3D-printed components.

6.
Sci Rep ; 7(1): 16186, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170527

RESUMEN

High-index dielectric structures have recently been studied intensively for Mie resonances at optical frequencies. These dielectric structures can enable extreme light manipulation, similar to that which has been achieved with plasmonic nanostructures. In the microwave region, dielectric resonators and metamaterials can be fabricated directly using 3D printing, which is advantageous for fabricating structurally complicated 3D geometries. It is therefore especially suitable for the fabrication of subwavelength structures. Here we report theoretical investigations on microwave Fano resonances in 3D-printable dielectric materials and structures. In particular, we propose and analyse 3D-printable, hollow, dielectric resonators with relatively low refractive indices, which exhibit sharp Fano resonances. We can control the interaction between bright and dark modes in a coupled dielectric particle pair by adjusting the inner-hole size, and thus we can increase the radiative Q factors further. We also find that Fano resonances in these hollow dielectric resonators are very sensitive to an index change in the surrounding medium, which could be useful for long-distance environmental sensing. New possibilities and opportunities are opening up with the rapid development of 3D-printing technologies. Our findings and the detailed investigations reported here can provide useful guidelines for future photonic devices based on 3D-printable materials and structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA