Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 119(5): 950-965, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814057

RESUMEN

Cytoplasmic dynein is a eukaryotic motor protein complex that, along with its regulatory protein dynactin, is essential to the transport of organelles within cells. The interaction of dynein with dynactin is regulated by binding between the intermediate chain (IC) subunit of dynein and the p150Glued subunit of dynactin. Even though in the rat versions of these proteins this interaction primarily involves the single α-helix region at the N-terminus of the IC, in Drosophila and yeast ICs the removal of a nascent helix (H2) downstream of the single α-helix considerably diminishes IC-p150Glued complex stability. We find that for ICs from various species, there is a correlation between disorder in H2 and its contribution to binding affinity, and that sequence variations in H2 that do not change the level of disorder show similar binding behavior. Analysis of the structure and interactions of the IC from Chaetomium thermophilum demonstrates that the H2 region of C. thermophilum IC has a low helical propensity and establishes that H2 binds directly to the coiled-coil 1B (CC1B) domain of p150Glued, thus explaining why H2 is necessary for tight binding. Isothermal titration calorimetry, circular dichroism, and NMR studies of smaller CC1B constructs localize the region of CC1B most essential for a tight interaction with IC. These results suggest that it is the level of disorder in H2 of IC along with its charge, rather than sequence specificity, that underlie its importance in initiating tight IC-p150Glued complex formation. We speculate that the nascent H2 helix may provide conformational flexibility to initiate binding, whereas those species that have a fully folded H2 have co-opted an alternative mechanism for promoting p150Glued binding.


Asunto(s)
Dineínas , Proteínas Asociadas a Microtúbulos , Animales , Chaetomium , Complejo Dinactina , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Estructura Terciaria de Proteína , Ratas
2.
J Mol Biol ; 431(24): 4959-4977, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31634467

RESUMEN

The rabies and Ebola viruses recruit the highly conserved host protein LC8 for their own reproductive success. In vivo knockouts of the LC8 recognition motif within the rabies virus phosphoprotein (RavP) result in completely nonlethal viral infections. In this work, we examine the molecular role LC8 plays in viral lethality. We show that RavP and LC8 colocalize in rabies infected cells, and that LC8 interactions are essential for efficient viral polymerase functionality. NMR, SAXS, and molecular modeling demonstrate that LC8 binding to a disordered linker adjacent to an endogenous dimerization domain results in restrictions in RavP domain orientations. The resulting ensemble structure of RavP-LC8 tetrameric complex is similar to that of a related virus phosphoprotein that does not bind LC8, suggesting that with RavP, LC8 binding acts as a switch to induce a more active conformation. The high conservation of the LC8 motif in Lyssavirus phosphoproteins and its presence in other analogous proteins such as the Ebola virus VP35 evinces a broader purpose for LC8 in regulating downstream phosphoprotein functions vital for viral replication.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Proteínas de Drosophila/química , Dineínas/química , Lyssavirus/enzimología , Fosfoproteínas/química , Proteínas Virales/química , Secuencia Conservada , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Activación Enzimática , Interacciones Huésped-Patógeno/inmunología , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Virus de la Rabia/metabolismo , Factor de Transcripción STAT1/metabolismo , Relación Estructura-Actividad , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA