Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181741

RESUMEN

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Asunto(s)
Neoplasias Pulmonares , Proteogenómica , Carcinoma Pulmonar de Células Pequeñas , Humanos , Línea Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células Pequeñas/química , Carcinoma Pulmonar de Células Pequeñas/genética , Xenoinjertos , Biomarcadores de Tumor/análisis
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110400

RESUMEN

Oncogenic imbalance of DNA methylation is well recognized in cancer development. The ten-eleven translocation (TET) family of dioxygenases, which facilitates DNA demethylation, is frequently dysregulated in cancers. How such dysregulation contributes to tumorigenesis remains poorly understood, especially in solid tumors which present infrequent mutational incidence of TET genes. Here, we identify loss-of-function mutations of TET in 7.4% of human lung adenocarcinoma (LUAD), which frequently co-occur with oncogenic KRAS mutations, and this co-occurrence is predictive of poor survival in LUAD patients. Using an autochthonous mouse model of KrasG12D -driven LUAD, we show that individual or combinational loss of Tet genes markedly promotes tumor development. In this Kras-mutant and Tet-deficient model, the premalignant lung epithelium undergoes neoplastic reprogramming of DNA methylation and transcription, with a particular impact on Wnt signaling. Among the Wnt-associated components that undergo reprogramming, multiple canonical Wnt antagonizing genes present impaired expression arising from elevated DNA methylation, triggering aberrant activation of Wnt signaling. These impairments can be largely reversed upon the restoration of TET activity. Correspondingly, genetic depletion of ß-catenin, the transcriptional effector of Wnt signaling, substantially reverts the malignant progression of Tet-deficient LUAD. These findings reveal TET enzymes as critical epigenetic barriers against lung tumorigenesis and highlight the therapeutic vulnerability of TET-mutant lung cancer through targeting Wnt signaling.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Metilación de ADN , ADN de Neoplasias/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Vía de Señalización Wnt , Adenocarcinoma del Pulmón/genética , Animales , ADN de Neoplasias/genética , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Transgénicos , Neoplasias Experimentales/genética , Proteínas Proto-Oncogénicas/metabolismo
3.
Br J Cancer ; 130(5): 716-727, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38195889

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. We previously found that Mediator complex subunit 23 (MED23) is important for the tumourigenicity of lung cancer cells with hyperactive Ras activity in vitro, although the in vivo function of MED23 in lung tumourigenesis remains to be explored. METHODS: In this study, we utilized well-characterized KrasG12D-driven non-small cell lung cancer mouse model to investigate the role of MED23 in lung cancer. The lung tumour progression was evaluated by H&E and IHC analysis. Western blotting and qRT-PCR assays were performed to detect changes in gene expression. Immune cells were analyzed by FACS technology. RNA-seq and reporter assays were conducted to explore the mechanism. RESULTS: We observed that lung epithelial Med23 deletion by adeno-Cre resulted in a significant increase in KrasG12D tumour number and size, which was further verified with another mouse model with Med23 specifically deleted in alveolar type II cells. Mice with lung-specific Med23 deficiency also exhibited accelerated tumourigenesis, and a higher proliferation rate for tumour cells, along with increased ERK phosphorylation. Notably, the numbers of infiltrating CD4+ T cells and CD8+ T cells were significantly reduced in the lungs of Med23-deficient mice, while the numbers of myeloid-derived suppressor cells (MDSCs) and Treg cells were significantly increased, suggesting the enhanced immune escape capability of the Med23-deficient lung tumours. Transcriptomic analysis revealed that the downregulated genes in Med23-deficient lung tumour tissues were associated with the immune response. Specifically, Med23 deficiency may compromise the MHC-I complex formation, partially through down-regulating B2m expression. CONCLUSIONS: Collectively, these findings revealed that MED23 may negatively regulate Kras-induced lung tumourigenesis in vivo, which would improve the precise classification of KRAS-mutant lung cancer patients and provide new insights for clinical interventions.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Linfocitos T CD8-positivos/metabolismo , Microambiente Tumoral/genética , Transformación Celular Neoplásica/genética , Carcinogénesis/genética , Pulmón/metabolismo , Complejo Mediador/genética
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(6): 948-955, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249335

RESUMEN

Small cell lung cancer (SCLC) accounts for approximately 15% of all lung cancer cases and features a strong predilection for early metastasis and extremely poor prognosis. Despite being highly sensitive to chemotherapy and/or radiotherapy initially, most SCLC patients develop therapeutic resistance within one year and die of distant metastases. Multiple studies have revealed the high heterogeneity and strong plasticity of SCLC associated with frequent metastases and early development of therapeutic resistance as well as poor clinical outcome. Importantly, different SCLC subtypes are associated with different therapeutic vulnerabilities, and the inflamed subtype tends to have the best response to immunotherapy, which highlights the importance of precision medicine in the clinic. Here, we review recent advances in SCLC heterogeneity and plasticity and their link to distant metastases and chemotherapy resistance. We hope that a better understanding of the molecular mechanisms underlying SCLC malignant progression will help to develop better intervention strategies for this deadly disease.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Neoplasias Pulmonares/patología
5.
PLoS Genet ; 16(11): e1009168, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137086

RESUMEN

MicroRNAs (miRNAs) play important roles in the development of various cancers including lung cancer which is one of the devastating diseases worldwide. How miRNAs function in de novo lung tumorigenesis remains largely unknown. We here developed a CRISPR/Cas9-mediated dual guide RNA (dgRNA) system to knockout miRNAs in genetically engineered mouse model (GEMM). Through bioinformatic analyses of human lung cancer miRNA database, we identified 16 downregulated miRNAs associated with malignant progression and performed individual knockout with dgRNA system in KrasG12D/Trp53L/L (KP) mouse model. Using this in vivo knockout screening, we identified miR-30b and miR-146a, which has been previously reported as tumor suppressors and miR-190b, a new tumor-suppressive miRNA in lung cancer development. Over-expression of miR-190b in KP model as well as human lung cancer cell lines significantly suppressed malignant progression. We further found that miR-190b targeted the Hus1 gene and knockout of Hus1 in KP model dramatically suppressed lung tumorigenesis. Collectively, our study developed an in vivo miRNA knockout platform for functionally screening in GEMM and identified miR-190b as a new tumor suppressor in lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Proteínas de Ciclo Celular/genética , Neoplasias Pulmonares/genética , MicroARNs/metabolismo , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/patología , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Biología Computacional , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Células HEK293 , Humanos , Estimación de Kaplan-Meier , Pulmón/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , MicroARNs/genética , Estadificación de Neoplasias , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética
6.
Eur J Immunol ; 51(7): 1698-1714, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33949677

RESUMEN

CD4+ CD8+ double-positive thymocytes give rise to both conventional TCRαß+ T cells and invariant natural killer T cells (iNKT cells), but these two kinds of cells display different characteristics. The molecular mechanism underlying iNKT cell lineage development and function acquisition remain to be elucidated. We show that the loss of chromatin assembly factor 1B (CHAF1b) maintains the normal development of conventional TCRαß+ T cells but severely impairs early development of iNKT cells. This dysregulation is accompanied by the impairment in chromatin activation and gene transcription at Vα14-Jα18 locus. Notably, ectopic expression of a Vα14-Jα18 TCR rescues Chaf1b-deficient iNKT cell developmental defects. Moreover, cytokine secretion and antitumor activity are substantially maintained in Vα14-Jα18 TCR transgene-rescued Chaf1b-deficient iNKT cells. Our study identifies CHAF1b as a critical factor that controls the early development but not function acquisition of iNKT cells via lineage- and stage-specific regulation.


Asunto(s)
Factor 1 de Ensamblaje de la Cromatina/inmunología , Células T Asesinas Naturales/inmunología , Animales , Diferenciación Celular/inmunología , Línea Celular Tumoral , Linaje de la Célula/inmunología , Ensamble y Desensamble de Cromatina/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Timocitos/inmunología
7.
Cell Mol Life Sci ; 79(1): 42, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34921639

RESUMEN

Targeting airway goblet cell metaplasia is a novel strategy that can potentially reduce the chronic obstructive pulmonary disease (COPD) symptoms. Tumor suppressor liver kinase B1 (LKB1) is an important regulator of the proliferation and differentiation of stem/progenitor cells. In this study, we report that LKB1 expression was downregulated in the lungs of patients with COPD and in those of cigarette smoke-exposed mice. Nkx2.1Cre; Lkb1f/f mice with conditional loss of Lkb1 in mouse lung epithelium displayed airway mucus hypersecretion and pulmonary macrophage infiltration. Single-cell transcriptomic analysis of the lung tissues from Nkx2.1Cre; Lkb1f/f mice further revealed that airway goblet cell differentiation was altered in the absence of LKB1. An organoid culture study demonstrated that Lkb1 deficiency in mouse airway (club) progenitor cells promoted the expression of FIZZ1/RELM-α, which drove airway goblet cell differentiation and pulmonary macrophage recruitment. Additionally, monocyte-derived macrophages in the lungs of Nkx2.1Cre; Lkb1f/f mice exhibited an alternatively activated M2 phenotype, while expressing RELM-α, which subsequently aggravated airway goblet cell metaplasia. Our findings suggest that the LKB1-mediated crosstalk between airway progenitor cells and macrophages regulates airway goblet cell metaplasia. Moreover, our data suggest that LKB1 agonists might serve as a potential therapeutic option to treat respiratory disorders associated with goblet cell metaplasia.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Células Caliciformes/metabolismo , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Animales , Comunicación Celular , Línea Celular , Fibroblastos , Células Caliciformes/patología , Humanos , Pulmón/patología , Ratones , Ratones Transgénicos
8.
PLoS Genet ; 15(2): e1007977, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30789911

RESUMEN

Heart valve disease is a major clinical problem worldwide. Cardiac valve development and homeostasis need to be precisely controlled. Hippo signaling is essential for organ development and tissue homeostasis, while its role in valve formation and morphology maintenance remains unknown. VGLL4 is a transcription cofactor in vertebrates and we found it was mainly expressed in valve interstitial cells at the post-EMT stage and was maintained till the adult stage. Tissue specific knockout of VGLL4 in different cell lineages revealed that only loss of VGLL4 in endothelial cell lineage led to valve malformation with expanded expression of YAP targets. We further semi-knockout YAP in VGLL4 ablated hearts, and found hyper proliferation of arterial valve interstitial cells was significantly constrained. These findings suggest that VGLL4 is important for valve development and manipulation of Hippo components would be a potential therapy for preventing the progression of congenital valve disease.


Asunto(s)
Células Endoteliales/citología , Válvulas Cardíacas/crecimiento & desarrollo , Hipertrofia Ventricular Izquierda/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Válvulas Cardíacas/citología , Válvulas Cardíacas/metabolismo , Vía de Señalización Hippo , Homeostasis , Hipertrofia Ventricular Izquierda/veterinaria , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
9.
J Biol Chem ; 295(3): 690-700, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31771978

RESUMEN

Genetic lineage tracing is widely used to study organ development and tissue regeneration. Multicolor reporters are a powerful platform for simultaneously tracking discrete cell populations. Here, combining Dre-rox and Cre-loxP systems, we generated a new dual-recombinase reporter system, called Rosa26 traffic light reporter (R26-TLR), to monitor red, green, and yellow fluorescence. Using this new reporter system with the three distinct fluorescent reporters combined on one allele, we found that the readouts of the two recombinases Cre and Dre simultaneously reflect Cre+Dre-, Cre-Dre+, and Cre+Dre+ cell lineages. As proof of principle, we show specific labeling in three distinct progenitor/stem cell populations, including club cells, AT2 cells, and bronchoalveolar stem cells, in Sftpc-DreER;Scgb1a1-CreER;R26-TLR mice. By using this new dual-recombinase reporter system, we simultaneously traced the cell fate of these three distinct cell populations during lung repair and regeneration, providing a more comprehensive picture of stem cell function in distal airway repair and regeneration. We propose that this new reporter system will advance developmental and regenerative research by facilitating a more sophisticated genetic approach to studying in vivo cell fate plasticity.


Asunto(s)
Linaje de la Célula/genética , Integrasas/genética , Recombinasas/genética , Células Madre/citología , Alelos , Animales , Diferenciación Celular/genética , Fluorescencia , Marcación de Gen , Genes Reporteros/genética , Integrasas/química , Ratones , Ratones Transgénicos/genética , Células Madre/química
10.
Hepatology ; 71(6): 1988-2004, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31538665

RESUMEN

BACKGROUND AND AIMS: The conserved Hippo pathway regulates organ size, tissue homeostasis, and tumorigenesis. Interferon regulatory factor 2 binding protein 2 (IRF2BP2) was originally identified as a transcriptional corepressor. However, the association between IRF2BP2 and the Hippo pathway remains largely unknown. In addition, the biological function and regulation mechanism of IRF2BP2 in liver cancer are poorly understood. APPROACH AND RESULTS: In this study, we uncovered the clinical significance of IRF2BP2 in suppressing hepatocellular carcinogenesis. We showed that IRF2BP2, a direct target repressed by the Yes-associated protein (YAP)/TEA domain transcription factor 4 (TEAD4) transcriptional complex, inhibited YAP activity through a feedback loop. IRF2BP2 stabilized vestigial-like family member 4 (VGLL4) and further enhanced VGLL4's inhibitory function on YAP. Moreover, liver-specific IRF2BP2 overexpression suppressed tumor formation induced by Hippo pathway inactivation. CONCLUSIONS: These results revealed the important role of IRF2BP2 in repressing liver cancer progression and highlighted a feedback loop underlying the Hippo pathway in organ-size control and tumorigenesis.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias Hepáticas , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Transducción de Señal , Factores de Transcripción de Dominio TEA , Proteínas Supresoras de Tumor/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(17): E3978-E3986, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29632194

RESUMEN

Lung cancer is the leading cause of cancer-related death worldwide. Inactivation of tumor suppressor genes (TSGs) promotes lung cancer malignant progression. Here, we take advantage of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated somatic gene knockout in a KrasG12D/+ mouse model to identify bona fide TSGs. From individual knockout of 55 potential TSGs, we identify five genes, including Utx, Ptip, Acp5, Acacb, and Clu, whose knockout significantly promotes lung tumorigenesis. These candidate genes are frequently down-regulated in human lung cancer specimens and significantly associated with survival in patients with lung cancer. Through crossing the conditional Utx knockout allele to the KrasG12D/+ mouse model, we further find that Utx deletion dramatically promotes lung cancer progression. The tumor-promotive effect of Utx knockout in vivo is mainly mediated through an increase of the EZH2 level, which up-regulates the H3K27me3 level. Moreover, the Utx-knockout lung tumors are preferentially sensitive to EZH2 inhibitor treatment. Collectively, our study provides a systematic screening of TSGs in vivo and identifies UTX as an important epigenetic regulator in lung tumorigenesis.


Asunto(s)
Sistemas CRISPR-Cas , Transformación Celular Neoplásica/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Experimentales/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Histona Demetilasas/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
12.
Cancer Sci ; 111(10): 3564-3575, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32767810

RESUMEN

Ras has been found to be mutated in 30% of non-small cell lung cancers, and its mutation has been regarded as a causal factor underlying tumorigenesis. However, no successful medicine has been developed so far to inhibit Ras for lung cancer treatment. We have previously identified DHX33 as a Ras downstream effector, promoting cell cycle progression and cell growth. In this study, with the K-Ras (G12D);DHX33 (lox/lox) mouse model, we discovered that genetic ablation of DHX33 inhibited tumor development. We further found that ablation of DHX33 altered the expression of nearly 2000 genes which are critical in cancer development such as cell cycle, apoptosis, glycolysis, Wnt signaling, and cell migration. Our study for the first time demonstrates the pivotal role of the DHX33 in Ras-driven lung cancer development in vivo and highlights that pharmacological targeting DHX33 can be a feasible option in treating Ras-mutant lung cancers.


Asunto(s)
Carcinogénesis/genética , ARN Helicasas DEAD-box/genética , Neoplasias Pulmonares/genética , Proteínas ras/genética , Animales , Apoptosis/genética , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Pulmón/patología , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Vía de Señalización Wnt/genética
13.
Proc Natl Acad Sci U S A ; 114(20): E3964-E3973, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28468801

RESUMEN

Activation of phosphatidylinositol 3 kinase (PI3K), Ras, and Her2 signaling plays a critical role in cancer development. Hotspot constitutive activating mutations in oncogenes, such as PIK3CA encoding the p110α catalytic subunit or RAS, as well as overexpression of Her2, are frequently found in human tumors and cancers. It has been well established that activation of these oncogenes profoundly promotes tumor metastasis, whereas decreased expression of ΔNp63α, the major protein isoform of the p53-related p63 expressed in epithelial cells, has been associated with cancer metastasis. In this study, we demonstrate that hotspot oncogenic mutations on PIK3CA and RAS, including p110αH1047R, K-RasG12V, and H-RasG12V, as well as activation of Her2, all led to suppression of ΔNp63α expression via Akt-fork-head transcription factor 3a (Akt-FOXO3a) signaling, resulting in increased cell motility and tumor metastasis. Expression of ΔNp63α effectively reversed p110αH1047R-, K-RasG12V-, H-RasG12V-, or Her2-induced cell motility in vitro and tumor metastasis in mouse models. We show that ΔNp63α was a direct FOXO3a transcriptional target and that expression of FOXO3a and ΔNp63α was correlated in human cancer biopsy samples. Together, these results demonstrate that ΔNp63α is a common inhibitory target of oncogenic PI3K, Ras, and Her2, and that ΔNp63α may function as a critical integrator of oncogenic signaling in cancer metastasis.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Femenino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Genes ras/genética , Humanos , Ratones , Mutación , Metástasis de la Neoplasia/genética , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transducción de Señal
14.
Proc Natl Acad Sci U S A ; 114(49): 12940-12945, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29180421

RESUMEN

Zn plays a key role in controlling macrophage function during an inflammatory event. Cellular Zn homeostasis is regulated by two families of metal transporters, the SLC39A family of importers and the SLC30A family of exporters; however, the precise role of these transporters in maintaining macrophage function is poorly understood. Using macrophage-specific Slc39a10-knockout (Slc39a10fl/fl;LysM-Cre+ ) mice, we found that Slc39a10 plays an essential role in macrophage survival by mediating Zn homeostasis in response to LPS stimulation. Compared with Slc39a10fl/fl mice, Slc39a10fl/fl;LysM-Cre+ mice had significantly lower mortality following LPS stimulation as well as reduced liver damage and lower levels of circulating inflammatory cytokines. Moreover, reduced intracellular Zn concentration in Slc39a10fl/fl;LysM-Cre+ macrophages led to the stabilization of p53, which increased apoptosis upon LPS stimulation. Concomitant knockout of p53 largely rescued the phenotype of Slc39a10fl/fl;LysM-Cre+ mice. Finally, the phenotype in Slc39a10fl/fl;LysM-Cre+ mice was mimicked in wild-type mice using the Zn chelator TPEN and was reversed with Zn supplementation. Taken together, these results suggest that Slc39a10 plays a role in promoting the survival of macrophages through a Zn/p53-dependent axis in response to inflammatory stimuli.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Macrófagos/fisiología , Sepsis/inmunología , Animales , Apoptosis/inmunología , Supervivencia Celular , Citocinas/sangre , Humanos , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , Sepsis/metabolismo , Sobrevivientes , Proteína p53 Supresora de Tumor/metabolismo , Zinc/metabolismo
15.
Biochem Biophys Res Commun ; 515(1): 214-221, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31146914

RESUMEN

Small cell lung carcinoma (SCLC) is one of the deadliest cancer types, with a 5-year survival rate less than 10%. Kdm1a/Lsd1 has recently been implicated as a potential therapeutic target for SCLC. However, the underlying molecular mechanism by which Kdm1a promotes the oncogenesis of SCLC has not been fully understood. Kdm1a is significantly elevated in most human SCLC specimens, whereas Rest, a tumor suppressor and neuronal repressive transcriptional factor, is typically inactivated. Knock-out of Kdm1a (Kdm1a-KO) in mouse SCLC cell lines resulted in the suppression of cell growth and soft agar colony formation. RNA-Seq analysis of the Kdm1a-KO cells revealed significant repression of a program of neuroendocrine signature genes, and conversely, a significant upregulation of a network of genes capable of inhibiting tumor cell growth. Rest was identified among the top 10 upregulated genes in Kdm1a-KO cells. The treatment of the SCLC cells with Kdm1a demethylase inhibitors resulted in a dramatic up-regulation of Rest similar to the extent of that in Kdm1a-KO cells. Importantly, accompanying the restored expression of the SCLC signature genes, knock-out of Rest in Kdm1a-KO cells rescued the restricted cell growth and soft agar colony formation. Taken together, these novel findings show that Kdm1a is a key transcriptional repressor of Rest, and that suppression of SCLC progression by the targeted inhibition of Kdm1a depends on the reactivation of Rest, suggesting a new strategy for effective SCLC treatment by targeting the Kdm1a/Rest molecular pathway.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Histona Demetilasas/genética , Neoplasias Pulmonares/genética , Proteínas Represoras/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Estudios de Cohortes , Progresión de la Enfermedad , Células HEK293 , Histona Demetilasas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Ratones Noqueados , Proteínas Represoras/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología
16.
BMC Genomics ; 19(1): 435, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29866045

RESUMEN

BACKGROUND: Lung cancer is a very heterogeneous disease that can be pathologically classified into different subtypes including small-cell lung carcinoma (SCLC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and large-cell carcinoma (LCC). Although much progress has been made towards the oncogenic mechanism of each subtype, transcriptional circuits mediating the upstream signaling pathways and downstream functional consequences remain to be systematically studied. RESULTS: Here we trained a one-class support vector machine (OC-SVM) model to establish a general transcription factor (TF) regulatory network containing 325 TFs and 18724 target genes. We then applied this network to lung cancer subtypes and identified those deregulated TFs and downstream targets. We found that the TP63/SOX2/DMRT3 module was specific to LUSC, corresponding to squamous epithelial differentiation and/or survival. Moreover, the LEF1/MSC module was specifically activated in LUAD and likely to confer epithelial-to-mesenchymal transition, known important for cancer malignant progression and metastasis. The proneural factor, ASCL1, was specifically up-regulated in SCLC which is known to have a neuroendocrine phenotype. Also, ID2 was differentially regulated between SCLC and LUSC, with its up-regulation in SCLC linking to energy supply for fast mitosis and its down-regulation in LUSC linking to the attenuation of immune response. We further described the landscape of TF regulation among the three major subtypes of lung cancer, highlighting their functional commonalities and specificities. CONCLUSIONS: Our approach uncovered the landscape of transcriptional deregulation in lung cancer, and provided a useful resource of TF regulatory network for future studies.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Transcripción Genética , Redes Reguladoras de Genes , Humanos , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
17.
Am J Pathol ; 187(5): 954-962, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28284717

RESUMEN

Lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are two distinct subtypes of non-small-cell lung carcinoma. Interestingly, approximately 4% to 9% of human non-small-cell lung carcinoma tumors contain mixed adenomatous and squamous pathologies in a single lesion, clinically termed adenosquamous cell carcinoma. More important, these two different pathological components frequently share identical oncogenic mutations, indicative of a potential transition. Indeed, recent data have provided convincing evidence in supporting the ADC to SCC transdifferentiation in lungs. In the liver kinase B1 (official name STK11)-deficient mouse model, lung ADC can progressively transdifferentiate to SCC through pathologically mixed adenosquamous cell carcinoma as the intermediate status. Mechanistic studies further identify essential roles of extracellular matrix remodeling and metabolic reprogramming during this phenotypic transition. Small molecular compounds, including lysyl oxidase inhibitors and reactive oxygen species-inducing reagents such as phenformin, significantly accelerate the transition from lung ADC to SCC and thus confer lung tumors with drug resistance. Consistent with these findings, recent clinical studies have shown that epidermal growth factor receptor-mutant lung ADC can transdifferentiate to SCC in relapsed cancer patients. Together, these data support that this phenotypic transition from lung ADC to SCC might represent a novel mechanism for drug resistance. This review will summarize our current understanding of the transdifferentiation from lung ADC to SCC.


Asunto(s)
Adenocarcinoma/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Transdiferenciación Celular/fisiología , Neoplasias Pulmonares/patología , Adenocarcinoma del Pulmón , Animales , Transformación Celular Neoplásica/patología , Resistencia a Antineoplásicos , Matriz Extracelular/fisiología , Humanos , Ratones , Fenotipo , Proteínas Quinasas/metabolismo
18.
Nucleic Acids Res ; 44(22): e164, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27596597

RESUMEN

A complex disease generally results not from malfunction of individual molecules but from dysfunction of the relevant system or network, which dynamically changes with time and conditions. Thus, estimating a condition-specific network from a single sample is crucial to elucidating the molecular mechanisms of complex diseases at the system level. However, there is currently no effective way to construct such an individual-specific network by expression profiling of a single sample because of the requirement of multiple samples for computing correlations. We developed here with a statistical method, i.e. a sample-specific network (SSN) method, which allows us to construct individual-specific networks based on molecular expressions of a single sample. Using this method, we can characterize various human diseases at a network level. In particular, such SSNs can lead to the identification of individual-specific disease modules as well as driver genes, even without gene sequencing information. Extensive analysis by using the Cancer Genome Atlas data not only demonstrated the effectiveness of the method, but also found new individual-specific driver genes and network patterns for various types of cancer. Biological experiments on drug resistance further validated one important advantage of our method over the traditional methods, i.e. we can even identify such drug resistance genes that actually have no clear differential expression between samples with and without the resistance, due to the additional network information.


Asunto(s)
Redes Reguladoras de Genes , Algoritmos , Línea Celular Tumoral , Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias , Humanos , Modelos Genéticos , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Fenotipo , Medicina de Precisión , Transcriptoma
19.
PLoS Genet ; 11(5): e1005249, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25992553

RESUMEN

Type IV collagens (Col IV), components of basement membrane, are essential in the maintenance of tissue integrity and proper function. Alteration of Col IV is related to developmental defects and diseases, including cancer. Col IV α chains form α1α1α2, α3α4α5 and α5α5α6 protomers that further form collagen networks. Despite knowledge on the functions of major Col IV (α1α1α2), little is known whether minor Col IV (α3α4α5 and α5α5α6) plays a role in cancer. It also remains to be elucidated whether major and minor Col IV are functionally redundant. We show that minor Col IV α5 chain is indispensable in cancer development by using α5(IV)-deficient mouse model. Ablation of α5(IV) significantly impeded the development of KrasG12D-driven lung cancer without affecting major Col IV expression. Epithelial α5(IV) supports cancer cell proliferation, while endothelial α5(IV) is essential for efficient tumor angiogenesis. α5(IV), but not α1(IV), ablation impaired expression of non-integrin collagen receptor discoidin domain receptor-1 (DDR1) and downstream ERK activation in lung cancer cells and endothelial cells. Knockdown of DDR1 in lung cancer cells and endothelial cells phenocopied the cells deficient of α5(IV). Constitutively active DDR1 or MEK1 rescued the defects of α5(IV)-ablated cells. Thus, minor Col IV α5(IV) chain supports lung cancer progression via DDR1-mediated cancer cell autonomous and non-autonomous mechanisms. Minor Col IV can not be functionally compensated by abundant major Col IV.


Asunto(s)
Colágeno Tipo IV/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colágeno Tipo IV/genética , Receptor con Dominio Discoidina 1 , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Tirosina Quinasas Receptoras/genética
20.
Biochim Biophys Acta ; 1866(2): 232-251, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27681874

RESUMEN

AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Carcinogénesis , Transducción de Señal/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Humanos , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Subunidades de Proteína/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA