Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(46): 28743-28753, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139572

RESUMEN

Mammalian brain glycome remains a relatively poorly understood area compared to other large-scale "omics" studies, such as genomics and transcriptomics due to the inherent complexity and heterogeneity of glycan structure and properties. Here, we first performed spatial and temporal analysis of glycome expression patterns in the mammalian brain using a cutting-edge experimental tool based on liquid chromatography-mass spectrometry, with the ultimate aim to yield valuable implications on molecular events regarding brain functions and development. We observed an apparent diversity in the glycome expression patterns, which is spatially well-preserved among nine different brain regions in mouse. Next, we explored whether the glycome expression pattern changes temporally during postnatal brain development by examining the prefrontal cortex (PFC) at different time point across six postnatal stages in mouse. We found that glycan expression profiles were dynamically regulated during postnatal developments. A similar result was obtained in PFC samples from humans ranging in age from 39 d to 49 y. Novel glycans unique to the brain were also identified. Interestingly, changes primarily attributed to sialylated and fucosylated glycans were extensively observed during PFC development. Finally, based on the vast heterogeneity of glycans, we constructed a core glyco-synthesis map to delineate the glycosylation pathway responsible for the glycan diversity during the PFC development. Our findings reveal high levels of diversity in a glycosylation program underlying brain region specificity and age dependency, and may lead to new studies exploring the role of glycans in spatiotemporally diverse brain functions.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Polisacáridos/biosíntesis , Corteza Prefrontal/metabolismo , Adolescente , Adulto , Animales , Niño , Preescolar , Glicómica , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Corteza Prefrontal/crecimiento & desarrollo , Adulto Joven
2.
Traffic ; 16(5): 510-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25615530

RESUMEN

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune-modulatory receptor involved in phagocytosis and inflammation. Mutations of Q33X, Y38C and T66M cause Nasu-Hakola disease (NHD) which is characterized by early onset of dementia and bone cysts. A recent, genome-wide association study also revealed that single nucleotide polymorphism of TREM2, such as R47H, increased the risk of Alzheimer's disease (AD) similar to ApoE4. However, how these mutations affect the trafficking of TREM2, which may affect the normal functions of TREM2, was not known. In this study, we show that TREM2 with NHD mutations are impaired in the glycosylation with complex oligosaccharides in the Golgi apparatus, in the trafficking to plasma membrane and further processing by γ-secretase. Although R47H mutation in AD affected the glycosylation and normal trafficking of TREM2 less, the detailed pattern of glycosylated TREM2 differs from that of the wild type, thus suggesting that precise regulation of TREM2 glycosylation is impaired when arginine at 47 is mutated to histidine. Our results suggest that the impaired glycosylation and trafficking of TREM2 from endoplasmic reticulum/Golgi to plasma membrane by mutations may inhibit its normal functions in the plasma membrane, which may contribute to the disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Aparato de Golgi/metabolismo , Lipodistrofia/metabolismo , Glicoproteínas de Membrana/genética , Mutación , Oligosacáridos/metabolismo , Osteocondrodisplasias/metabolismo , Receptores Inmunológicos/genética , Panencefalitis Esclerosante Subaguda/metabolismo , Enfermedad de Alzheimer/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilación , Células HeLa , Humanos , Lipodistrofia/genética , Glicoproteínas de Membrana/metabolismo , Osteocondrodisplasias/genética , Polimorfismo de Nucleótido Simple , Transporte de Proteínas , Receptores Inmunológicos/metabolismo , Panencefalitis Esclerosante Subaguda/genética
3.
Biotechnol Bioeng ; 114(10): 2267-2278, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28627725

RESUMEN

Chinese hamster ovary (CHO) cells are the most widely used host cell lines for the commercial production of therapeutic proteins including Fc-fusion proteins. During the culture of recombinant CHO (rCHO) cells, host cell proteins (HCPs), secreted from viable cells and released from dead cells, accumulate extracellularly, potentially impairing product quality. In this study, the HCPs that accumulated extracellularly in batch and fed-batch cultures of Fc-fusion protein-producing rCHO cell lines (DG-Fc and DUKX-Fc) were identified and quantified using nanoflow liquid chromatography-tandem mass spectrometry (LC-MS/MS), followed by gene ontology and functional analysis. When the proteome database of Cricetulus griseus was used as a reference to identify the HCPs, more HCPs were identified for DG-Fc (1632 HCPs in batch culture and 1733 HCPs in fed-batch culture) than for DUKX-Fc (1114 HCPs in batch culture and 1002 HCPs in fed-batch culture). Clustering analysis of HCPs, which were classified into four clusters according to their concentration profiles during culture, showed that the concentration profiles of HCPs affecting the quality of Fc-fusion proteins correlated with changes in Fc-fusion protein quality. Taken together, the dataset of HCPs obtained in this study using the two different rCHO cell lines provides insights into the determination of appropriate target proteins to be removed during the culture and purification steps so as to ensure good Fc-fusion protein quality. Biotechnol. Bioeng. 2017;114: 2267-2278. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Células CHO/fisiología , Perfilación de la Expresión Génica/métodos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Proteoma/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Animales , Células CHO/clasificación , Cricetulus , Medios de Cultivo , Ingeniería Genética/métodos , Fragmentos Fc de Inmunoglobulinas/química , Mapeo Peptídico/métodos , Proteoma/química , Proteínas Recombinantes de Fusión/química
4.
Anal Chem ; 87(5): 2869-77, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25643168

RESUMEN

Tissue glyco-capture (TGC), a highly sensitive MS-compatible method for extraction of glycans from tissue, was combined with structure-specific nano-LC/MS for sensitive and detailed profiling of the mouse brain glycome. Hundreds of glycan structures were directly detected by accurate mass MS and structurally elucidated by MS/MS, revealing the presence of novel glycan motifs such as antennary fucosylation, sulfation, and glucuronidation that are potentially associated with cellular signaling and adhesion. Microgram-level sensitivity enabled glycomic analysis of specific regions of the brain, as demonstrated on not only brain sections (with a one-dimensional spatial resolution of 20 µm) but also isolated brain structures (e.g., the hippocampus). Reproducibility was extraordinarily high (R > 0.98) for both method and instrumental replicates. The pairing of TGC with structure-specific nano-LC/MS was found to be an exceptionally powerful platform for qualitative and quantitative exploration of the brain glycome.


Asunto(s)
Encéfalo/metabolismo , Glicómica/métodos , Polisacáridos/química , Animales , Cromatografía Liquida/métodos , Glicosilación , Masculino , Ratones , Ratones Endogámicos C57BL , Nanotecnología/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem/métodos
5.
J Proteome Res ; 12(1): 97-105, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23286719

RESUMEN

Human chromosome 11 is the third gene-rich chromosome having 1304 protein-coding genes. According to the GeneCards, this chromosome contains 240 genes related to diseases, as it is well known as a disease-rich chromosome. Although there are many protein-coding genes, the proteomic identification ratio is rather low. As a model study, human hippocampal tissues from patients suffering from Alzheimer's disease and epilepsy were prepared to evaluate the gene-centric statistics related to the gene expression and disorders of chromosome 11. A total of 8828 protein coding genes from brain tissues were extensively off-gel fractionated and profiled by a high resolution mass spectrometer with collision induced dissociation and electron transfer dissociation. Five-hundred twenty-three of the proteins from brain tissues were determined to belong to chromosome 11, representing 37% of the proteins reported in the Global Proteome Machine Database. We extracted gene clusters from a specific biological process or molecular function in gene ontology, among which the olfactory receptor genes showed the largest cluster on chromosome 11. Analysis of the proteome data set from the hippocampus provides a significant network associated with genes and proteins and leads to new insights into the biological and genetic mechanisms of chromosome 11-specific diseases such as Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Cromosomas Humanos Par 11 , Epilepsia , Hipocampo/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 11/metabolismo , Bases de Datos de Proteínas , Epilepsia/genética , Epilepsia/metabolismo , Expresión Génica , Humanos , Persona de Mediana Edad , Proteínas/clasificación , Proteínas/genética , Proteínas/metabolismo , Proteoma
6.
Front Neurosci ; 10: 618, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28149270

RESUMEN

The R47H coding variant of the triggering receptor expressed on myeloid cells-2 (TREM2) increases the risk of Alzheimer's disease (AD) similar to apolipoprotein E4. TREM2 R47H has recently been shown to have impaired binding to damage-associated lipid or apolipoprotein ligands. However, it is not known how this R47H variant affects the biochemical characteristics of TREM2 and alters the pathogenesis of AD. We previously reported that TREM2-R47H has a slightly different glycosylation pattern from wild-type. A more detailed characterization in our present study confirms that TREM2 R47H has an altered glycosylation pattern and reduced stability. TREM2 R47H shows different glycosylation profiles from analysis using monensin or kifunensine treatment which were confirmed by mass spectrometry. The solubility of TREM2 R47H and its cleaved products such as intracellular domain (ICD) is also decreased, increasing its proteasomal and lysosomal degradation. The different biochemical characteristics of TREM2 R47H, including glycosylation, solubility and processing, may offer insights into a future therapeutic strategy for AD.

7.
Brain Res ; 1306: 176-83, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19804765

RESUMEN

Parkinson's disease (PD) is caused by selective degeneration of the nigral dopaminergic (DArgic) neurons and is accompanied by motor dysfunctions such as tremor, akinesia, and rigidity. Changes in the degree of motor deficit can be utilized as a noninvasive way of assessing alterations in the number of DArgic neurons and/or the amount of DA in animal models of PD, such as mice systemically administrated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, in order to develop sensitive methods to detect DA-associated motor deficits, we designed a new test called vertical grid test and modified the existing horizontal grid test. After acute MPTP treatment, decreases in the levels of striatal DA (17.4% of control), dihydroxyphenylacetic acid (33.3%), and homovanillic acid (40.5%) were observed. On the modified horizontal grid test, the MPTP-administered mice exhibited average forelimb step distance that was lower than control (82.58%) and correlated with the striatal DA levels. On the vertical grid test, the MPTP-treated mice took dramatically longer total time to climb down (220.94%) and time to make the turn (339.29%) compared to control, and this correlated well with the degree of striatal DA depletion. In comparison, the gait test produced only a small, albeit statistically significant, reduction in the mean stride length (94.55% of control). These results show that the vertical grid test can provide a sensitive measure of motor deficit in mice following administration of MPTP.


Asunto(s)
Evaluación de la Discapacidad , Discinesia Inducida por Medicamentos/diagnóstico , Trastornos Parkinsonianos/diagnóstico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Fenómenos Biomecánicos , Cromatografía Líquida de Alta Presión , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/metabolismo , Miembro Anterior , Marcha , Ácido Homovanílico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Destreza Motora , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/complicaciones , Fenilacetatos/metabolismo , Factores de Tiempo
8.
Neurochem Int ; 56(1): 161-7, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19815046

RESUMEN

Dopamine(DA)rgic neurons are particularly vulnerable due to the presence of oxidative stress-inducing molecules such as DA, tetrahydrobiopterin, iron and tyrosine hydroxylase (TH). We have recently observed that matrix metalloproteinase-3 (MMP-3) is involved in degeneration of DArgic neurons. In the present study, we sought to explore the role of MMP-3 in DArgic neurons not exposed to apparent stress conditions. In 8-week-old male mice deficient of MMP-3 gene (MMP-3 KO), the total number of DArgic neurons in the substantia nigra was considerably higher than wild type (WT). Primary cultured mesencephalic neurons from MMP-3 KO showed higher [(3)H]DA uptake capability compared to that of WT. The number of TH-immunopositive neurons and the length of average dendritic branch were also greater. This appeared to be selective for the DArgic system, because [(3)H]GABA uptake and calbindin D-28K and MAP-2 immunoreactivities were unaltered. On the other hand, no differences were noted in the levels of the striatal DA, DOPAC and BH4 and TH protein between the KO and WT. Interestingly, TH immunodensity per cell was lower in the DArgic neurons of MMP-3 KO both in primary culture and in vivo, suggesting the presence of a compensatory mechanism. These results further indicate a role of MMP-3 in the demise of DArgic neurons and suggest MMP-3 as a candidate cellular target for neuroprotective therapy.


Asunto(s)
Dopamina/metabolismo , Metaloproteinasa 3 de la Matriz/genética , Degeneración Nerviosa/enzimología , Neuronas/enzimología , Sustancia Negra/enzimología , Animales , Recuento de Células , Células Cultivadas , Cuerpo Estriado/metabolismo , Citoprotección/efectos de los fármacos , Citoprotección/fisiología , Dendritas/enzimología , Dendritas/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuronas/patología , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/patología , Sustancia Negra/fisiopatología , Tirosina 3-Monooxigenasa/metabolismo , Ácido gamma-Aminobutírico/metabolismo
9.
Neurotox Res ; 16(4): 361-71, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19582534

RESUMEN

In Parkinson disease (PD), the dopaminergic (DAergic) neurons in the substantia nigra undergo degeneration. While the exact mechanism for the degeneration is still not completely understood, neuronal apoptosis and inflammation are thought to play roles. We have recently obtained evidence that matrix metalloproteinase (MMP)-3 plays a crucial role in the apoptotic signal in DAergic cells as well as activation of microglia. The present study tested whether doxycycline might modulate MMP-3 and provide neuroprotection of DAergic neurons. Doxycycline effectively suppressed the expression of MMP-3 induced in response to cellular stress in the DAergic CATH.a cells. This was accompanied by protection of CATH.a cells as well as primary cultured mesencephalic DAergic neurons via attenuation of apoptosis. The active form of MMP-3, released under the cell stress condition, was also decreased in the presence of doxycycline. In addition, doxycycline led to downregulation of MMP-3 in microglial BV-2 cells exposed to lipopolysaccharide (LPS). This was accompanied by suppression of production of nitric oxide and TNF-alpha, as well as gene expression of iNOS, TNF-alpha, IL-1beta, and COX-2. In vivo, doxycycline provided neuroprotection of the nigral DAergic neurons following MPTP treatment, as assessed by tyrosine hydroxylase immunocytochemistry and silver staining, and suppressed microglial activation and astrogliosis as assessed by Iba-1 and GFAP immunochemistry, respectively. Taken together, doxycycline showed neuroprotective effect on DAergic system both in vitro and in vivo and this appeared to derive from anti-apoptotic and anti-inflammatory mechanisms involving downregulation of MMP-3.


Asunto(s)
Dopamina/metabolismo , Doxiciclina/farmacología , Metaloproteinasa 3 de la Matriz/metabolismo , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Sustancia Negra/citología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Etiquetado Corte-Fin in Situ/métodos , L-Lactato Deshidrogenasa/metabolismo , Masculino , Metaloproteinasa 3 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Nitritos/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Tinción con Nitrato de Plata/métodos , Estadísticas no Paramétricas , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA