Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 611(7935): 405-412, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323780

RESUMEN

Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems1-5. Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release. Calcitonin gene-related peptide (CGRP)-one such nociceptor-produced neuropeptide-directly increases the exhaustion of cytotoxic CD8+ T cells, which limits their capacity to eliminate melanoma. Genetic ablation of the TRPV1 lineage, local pharmacological silencing of nociceptors and antagonism of the CGRP receptor RAMP1 all reduced the exhaustion of tumour-infiltrating leukocytes and decreased the growth of tumours, nearly tripling the survival rate of mice that were inoculated with B16F10 melanoma cells. Conversely, CD8+ T cell exhaustion was rescued in sensory-neuron-depleted mice that were treated with local recombinant CGRP. As compared with wild-type CD8+ T cells, Ramp1-/- CD8+ T cells were protected against exhaustion when co-transplanted into tumour-bearing Rag1-deficient mice. Single-cell RNA sequencing of biopsies from patients with melanoma revealed that intratumoral RAMP1-expressing CD8+ T cells were more exhausted than their RAMP1-negative counterparts, whereas overexpression of RAMP1 correlated with a poorer clinical prognosis. Overall, our results suggest that reducing the release of CGRP from tumour-innervating nociceptors could be a strategy to improve anti-tumour immunity by eliminating the immunomodulatory effects of CGRP on cytotoxic CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Nociceptores , Animales , Ratones , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Melanoma/inmunología , Melanoma/patología , Nociceptores/fisiología , Células Receptoras Sensoriales/metabolismo , Neuritas/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Tasa de Supervivencia , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Genes RAG-1/genética , Humanos , Biopsia , Pronóstico
2.
Lancet Oncol ; 25(10): 1357-1370, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39362249

RESUMEN

BACKGROUND: Capmatinib has previously shown activity in treatment-naive and previously treated patients with non-small-cell lung cancer (NSCLC) and a MET exon 14-skipping mutation (METex14). Here, we report the final outcomes from the phase 2 GEOMETRY mono-1 study with an aim to provide further evidence for the activity of capmatinib. METHODS: In this non-randomised, multi-cohort, open-label, phase 2 trial conducted in 152 centres and hospitals in 25 countries, with patients treated in 95 centres in 20 countries, eligible patients (aged ≥18 years) with MET-dysregulated, EGFR wild-type, and ALK rearrangement-negative advanced NSCLC (stage IIIB/IV) and an Eastern Cooperative Oncology Group performance status of 0 or 1 were assigned to cohorts (1a, 1b, 2, 3, 4, 5a, 5b, 6 and 7) based on their MET status (METex14 or MET amplification) and previous therapy lines. Patients received capmatinib (400 mg orally twice daily) in 21-day treatment cycles. The primary endpoint was overall response rate by blinded independent central review per Response Evaluation Criteria in Solid Tumours version 1.1 and was performed on the full analysis set (all patients who received at least one dose of capmatinib). Previous reports of this study had published interim or primary data for cohorts 1-7. Here, we report the final clinical outcomes from all METex14 cohorts (4, 5b, 6, and 7) and safety from all study cohorts (1-7). The trial is registered with ClinicalTrials.gov, NCT02414139, and has been completed. FINDINGS: Of 373 treated patients enrolled from June 11, 2015, to March 12, 2020, 160 (97 [61%] female) patients had METex14 NSCLC and were enrolled in four cohorts: 60 treatment-naive (cohorts 5b and 7) and 100 previously treated (cohorts 4 and 6). The overall median study follow-up was 46·4 months (IQR 41·8-65·4) for the treatment-naïve patients and 66·9 months (56·7-73·9) for previously treated patients, respectively. Overall responses were recorded in 41 (68%; 95% CI 55·0-79·7) of 60 treatment-naive patients and 44 (44%; 95% CI 34·1-54·3) of 100 previously treated patients. In all 373 treated patients, the most common treatment-related adverse events were peripheral oedema (n=174; 47%), nausea (n=130; 35%), increased blood creatinine (n=78; 21%), and vomiting (n=74; 20%). Grade 3-4 serious adverse events occurred in 164 (44%) patients, dyspnoea being the most common (18 patients [5%]). Treatment-related deaths occurred in four (1%) patients (one each of cardiac arrest, hepatitis, organising pneumonia, and pneumonitis). No new safety signals were reported. INTERPRETATION: These long-term results support METex14 as a targetable oncogenic driver in NSCLC and add to the evidence supporting capmatinib as a targeted treatment option for treatment-naive and previously treated patients with METex14 NSCLC. FUNDING: Novartis Pharmaceuticals.


Asunto(s)
Benzamidas , Carcinoma de Pulmón de Células no Pequeñas , Exones , Neoplasias Pulmonares , Mutación , Proteínas Proto-Oncogénicas c-met , Triazinas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Proto-Oncogénicas c-met/genética , Femenino , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Anciano , Triazinas/uso terapéutico , Triazinas/efectos adversos , Triazinas/administración & dosificación , Benzamidas/efectos adversos , Adulto , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/administración & dosificación , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Imidazoles
3.
New Phytol ; 242(3): 1363-1376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450804

RESUMEN

Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.


Asunto(s)
Asteraceae , Tragopogon , Tragopogon/genética , Asteraceae/genética , Metilación de ADN/genética , Poliploidía , Genoma de Planta
4.
Proc Natl Acad Sci U S A ; 117(9): 4874-4884, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071208

RESUMEN

In plants and mammals, DNA methylation plays a critical role in transcriptional silencing by delineating heterochromatin from transcriptionally active euchromatin. A homeostatic balance between heterochromatin and euchromatin is essential to genomic stability. This is evident in many diseases and mutants for heterochromatin maintenance, which are characterized by global losses of DNA methylation coupled with localized ectopic gains of DNA methylation that alter transcription. Furthermore, we have shown that genome-wide methylation patterns in Arabidopsis thaliana are highly stable over generations, with the exception of rare epialleles. However, the extent to which natural variation in the robustness of targeting DNA methylation to heterochromatin exists, and the phenotypic consequences of such variation, remain to be fully explored. Here we describe the finding that heterochromatin and genic DNA methylation are highly variable among 725 A. thaliana accessions. We found that genic DNA methylation is inversely correlated with that in heterochromatin, suggesting that certain methylation pathway(s) may be redirected to genes upon the loss of heterochromatin. This redistribution likely involves a feedback loop involving the DNA methyltransferase, CHROMOMETHYLASE 3 (CMT3), H3K9me2, and histone turnover, as highly expressed, long genes with a high density of CMT3-preferred CWG sites are more likely to be methylated. Importantly, although the presence of CG methylation in genes alone may not affect transcription, genes containing CG methylation are more likely to become methylated at non-CG sites and silenced. These findings are consistent with the hypothesis that natural variation in DNA methylation homeostasis may underlie the evolution of epialleles that alter phenotypes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Homeostasis/genética , Homeostasis/fisiología , Proteínas de Arabidopsis/metabolismo , ADN (Citosina-5-)-Metiltransferasas , ADN-Citosina Metilasas/genética , ADN-Citosina Metilasas/metabolismo , Epigenómica , Inestabilidad Genómica , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Metiltransferasas , Fenotipo
5.
Annu Rev Genet ; 48: 49-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25149370

RESUMEN

ENCODE projects exist for many eukaryotes, including humans, but as of yet no defined project exists for plants. A plant ENCODE would be invaluable to the research community and could be more readily produced than its metazoan equivalents by capitalizing on the preexisting infrastructure provided from similar projects. Collecting and normalizing plant epigenomic data for a range of species will facilitate hypothesis generation, cross-species comparisons, annotation of genomes, and an understanding of epigenomic functions throughout plant evolution. Here, we discuss the need for such a project, outline the challenges it faces, and suggest ways forward to build a plant ENCODE.


Asunto(s)
Bases de Datos Genéticas , Epigenómica , Plantas/genética , Metilación de ADN/genética , Genoma Humano , Genoma de Planta , Humanos , Análisis de Secuencia de ADN
6.
Plant Cell ; 31(10): 2315-2331, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31439802

RESUMEN

Somatic embryogenesis is an important tissue culture technique that sometimes leads to phenotypic variation via genetic and/or epigenetic changes. To understand the genomic and epigenomic impacts of somatic embryogenesis, we characterized soybean (Glycine max) epigenomes sampled from embryos at 10 different stages ranging from 6 weeks to 13 years of continuous culture. We identified genome-wide increases in DNA methylation from cultured samples, especially at CHH sites. The hypermethylation almost exclusively occurred in regions previously possessing non-CG methylation and was accompanied by increases in the expression of genes encoding the RNA-directed DNA methylation (RdDM) machinery. The epigenomic changes were similar between somatic and zygotic embryogenesis. Following the initial global wave of hypermethylation, rare decay events of maintenance methylation were observed, and the extent of the decay increased with time in culture. These losses in DNA methylation were accompanied by downregulation of genes encoding the RdDM machinery and transcriptome reprogramming reminiscent of transcriptomes during late-stage seed development. These results reveal a process for reinforcing already silenced regions to maintain genome integrity during somatic embryogenesis over the short term, which eventually decays at certain loci over longer time scales.


Asunto(s)
Metilación de ADN/genética , Epigenoma/genética , Glycine max/genética , Semillas/genética , Células Cultivadas , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Silenciador del Gen , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Técnicas de Embriogénesis Somática de Plantas , RNA-Seq , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Glycine max/embriología , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo
7.
PLoS Genet ; 15(9): e1008291, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31498837

RESUMEN

DNA methylation and epigenetic silencing play important roles in the regulation of transposable elements (TEs) in many eukaryotic genomes. A majority of the maize genome is derived from TEs that can be classified into different orders and families based on their mechanism of transposition and sequence similarity, respectively. TEs themselves are highly methylated and it can be tempting to view them as a single uniform group. However, the analysis of DNA methylation profiles in flanking regions provides evidence for distinct groups of chromatin properties at different TE families. These differences among TE families are reproducible in different tissues and different inbred lines. TE families with varying levels of DNA methylation in flanking regions also show distinct patterns of chromatin accessibility and modifications within the TEs. The differences in the patterns of DNA methylation flanking TE families arise from a combination of non-random insertion preferences of TE families, changes in DNA methylation triggered by the insertion of the TE and subsequent selection pressure. A set of nearly 70,000 TE polymorphisms among four assembled maize genomes were used to monitor the level of DNA methylation at haplotypes with and without the TE insertions. In many cases, TE families with high levels of DNA methylation in flanking sequence are enriched for insertions into highly methylated regions. The majority of the >2,500 TE insertions into unmethylated regions result in changes in DNA methylation in haplotypes with the TE, suggesting the widespread potential for TE insertions to condition altered methylation in conserved regions of the genome. This study highlights the interplay between TEs and the methylome of a major crop species.


Asunto(s)
Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Zea mays/genética , Epigénesis Genética/genética , Epigenómica/métodos , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Genotipo , Haplotipos/genética , Polimorfismo Genético/genética , Análisis de Secuencia de ADN/métodos
8.
Plant Cell ; 29(9): 2150-2167, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28814644

RESUMEN

Recent studies have shown that one of the parental subgenomes in ancient polyploids is generally more dominant, having retained more genes and being more highly expressed, a phenomenon termed subgenome dominance. The genomic features that determine how quickly and which subgenome dominates within a newly formed polyploid remain poorly understood. To investigate the rate of emergence of subgenome dominance, we examined gene expression, gene methylation, and transposable element (TE) methylation in a natural, <140-year-old allopolyploid (Mimulus peregrinus), a resynthesized interspecies triploid hybrid (M. robertsii), a resynthesized allopolyploid (M. peregrinus), and progenitor species (M. guttatus and M. luteus). We show that subgenome expression dominance occurs instantly following the hybridization of divergent genomes and significantly increases over generations. Additionally, CHH methylation levels are reduced in regions near genes and within TEs in the first-generation hybrid, intermediate in the resynthesized allopolyploid, and are repatterned differently between the dominant and recessive subgenomes in the natural allopolyploid. Subgenome differences in levels of TE methylation mirror the increase in expression bias observed over the generations following hybridization. These findings provide important insights into genomic and epigenomic shock that occurs following hybridization and polyploid events and may also contribute to uncovering the mechanistic basis of heterosis and subgenome dominance.


Asunto(s)
Genoma de Planta , Hibridación Genética , Mimulus/genética , Poliploidía , Metilación de ADN/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Filogenia , Especificidad de la Especie
9.
J Exp Biol ; 222(Pt 2)2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446546

RESUMEN

Behaviour is often a front line response to changing environments. Recent studies show behavioural changes are associated with changes of gene expression; however, these studies have primarily focused on discrete behavioural states. We build on these studies by addressing additional contexts that produce qualitatively similar behavioural changes. We measured levels of gene expression and cytosine methylation, which is hypothesized to regulate the transcriptional architecture of behavioural transitions, within the brain during male parental care of the burying beetle Nicrophorus vespilloides in a factorial design. Male parenting is a suitably plastic behaviour because although male N. vespilloides typically do not provide direct care (i.e. feed offspring) when females are present, levels of feeding by a male equivalent to the female can be induced by removing the female. We examined three different factors: behavioural state (caring versus non-caring), social context (with or without a female mate) and individual flexibility (if a male switched to direct care after his mate was removed). The greatest number of differentially expressed genes were associated with behavioural state, followed by social context and individual flexibility. Cytosine methylation was not associated with changes of gene expression in any of the factors. Our results suggest a hierarchical association between gene expression and the different factors, but that this process is not controlled by cytosine methylation. Our results further suggest that the extent a behaviour is transient plays an underappreciated role in determining its underpinning molecular mechanisms.


Asunto(s)
Escarabajos/fisiología , Citosina/metabolismo , Expresión Génica , Animales , Variación Biológica Individual , Escarabajos/genética , Metilación de ADN , Masculino , Conducta Paterna/fisiología , Conducta Social
10.
Nucleic Acids Res ; 45(16): 9398-9412, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934503

RESUMEN

In mammals, faithful inheritance of genomic methylation patterns ensures proper gene regulation and cell behaviour, impacting normal development and fertility. Following establishment, genomic methylation patterns are transmitted through S-phase by the maintenance methyltransferase Dnmt1. Using a protein interaction screen, we identify Microprocessor component DROSHA as a novel DNMT1-interactor. Drosha-deficient embryonic stem (ES) cells display genomic hypomethylation that is not accounted for by changes in the levels of DNMT proteins. DNMT1-mediated methyltransferase activity is also reduced in these cells. We identify two transcripts that are specifically upregulated in Drosha- but not Dicer-deficient ES cells. Regions within these transcripts predicted to form stem-loop structures are processed by Microprocessor and can inhibit DNMT1-mediated methylation in vitro. Our results highlight DROSHA as a novel regulator of mammalian DNA methylation and we propose that DROSHA-mediated processing of RNA is necessary to ensure full DNMT1 activity. This adds to the DROSHA repertoire of non-miRNA dependent functions as well as implicating RNA in regulating DNMT1 activity and correct levels of genomic methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Ribonucleasa III/fisiología , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , Células Madre Embrionarias/enzimología , Células HEK293 , Humanos , Ratones , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Regulación hacia Arriba
11.
J Ind Microbiol Biotechnol ; 46(9-10): 1435-1443, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31342224

RESUMEN

A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405T, where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA transformation is restriction-modification systems, which defend against foreign DNA methylated differently than the host. To determine the active restriction-modification systems in this strain, we performed complete methylome analysis via single-molecule, real-time sequencing to detect 6-methyladenine and 4-methylcytosine and the rarely used whole-genome bisulfite sequencing to detect 5-methylcytosine. Multiple active systems were identified, and corresponding DNA methyltransferases were expressed from the Escherichia coli chromosome to mimic the C. thermocellum methylome. Plasmid methylation was experimentally validated and successfully electroporated into C. thermocellum ATCC 27405. This combined approach enabled genetic modification of the C. thermocellum-type strain and acts as a blueprint for transformation of other non-model microorganisms.


Asunto(s)
Clostridium thermocellum/metabolismo , Enzimas de Restricción-Modificación del ADN/metabolismo , Epigenoma , Clostridium thermocellum/genética , Metilación de ADN , Enzimas de Restricción-Modificación del ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica , Plásmidos/genética
12.
PLoS Genet ; 12(1): e1005790, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26771905

RESUMEN

LSH/DDM1 enzymes are required for DNA methylation in higher eukaryotes and have poorly defined roles in genome maintenance in yeast, plants, and animals. The filamentous fungus Neurospora crassa is a tractable system that encodes a single LSH/DDM1 homolog (NCU06306). We report that the Neurospora LSH/DDM1 enzyme is encoded by mutagen sensitive-30 (mus-30), a locus identified in a genetic screen over 25 years ago. We show that MUS-30-deficient cells have normal DNA methylation, but are hypersensitive to DNA damaging agents. MUS-30 is a nuclear protein, consistent with its predicted role as a chromatin remodeling enzyme, and levels of MUS-30 are increased following DNA damage. MUS-30 co-purifies with Neurospora WDR76, a homolog of yeast Changed Mutation Rate-1 and mammalian WD40 repeat domain 76. Deletion of wdr76 rescued DNA damage-hypersensitivity of Δmus-30 strains, demonstrating that the MUS-30-WDR76 interaction is functionally important. DNA damage-sensitivity of Δmus-30 is partially suppressed by deletion of methyl adenine glycosylase-1, a component of the base excision repair machinery (BER); however, the rate of BER is not affected in Δmus-30 strains. We found that MUS-30-deficient cells are not defective for DSB repair, and we observed a negative genetic interaction between Δmus-30 and Δmei-3, the Neurospora RAD51 homolog required for homologous recombination. Together, our findings suggest that MUS-30, an LSH/DDM1 homolog, is required to prevent DNA damage arising from toxic base excision repair intermediates. Overall, our study provides important new information about the functions of the LSH/DDM1 family of enzymes.


Asunto(s)
Daño del ADN/genética , Proteínas Fúngicas/genética , Inestabilidad Genómica , Neurospora crassa/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Metilación de ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN , Mutación
13.
Proc Natl Acad Sci U S A ; 113(32): 9111-6, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457936

RESUMEN

In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.


Asunto(s)
Metilación de ADN , Evolución Molecular , Magnoliopsida/genética , ADN (Citosina-5-)-Metiltransferasas/fisiología , Histonas/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(46): E6339-48, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578794

RESUMEN

H3K9 methylation directs heterochromatin formation by recruiting multiple heterochromatin protein 1 (HP1)-containing complexes that deacetylate histones and methylate cytosine bases in DNA. In Neurospora crassa, a single H3K9 methyltransferase complex, called the DIM-5,-7,-9, CUL4, DDB1 Complex (DCDC), is required for normal growth and development. DCDC-deficient mutants are hypersensitive to the genotoxic agent methyl methanesulfonate (MMS), but the molecular basis of genotoxic stress is unclear. We found that both the MMS sensitivity and growth phenotypes of DCDC-deficient strains are suppressed by mutation of embryonic ectoderm development or Su-(var)3-9; E(z); Trithorax (set)-7, encoding components of the H3K27 methyltransferase Polycomb repressive complex-2 (PRC2). Trimethylated histone H3K27 (H3K27me3) undergoes genome-wide redistribution to constitutive heterochromatin in DCDC- or HP1-deficient mutants, and introduction of an H3K27 missense mutation is sufficient to rescue phenotypes of DCDC-deficient strains. Accumulation of H3K27me3 in heterochromatin does not compensate for silencing; rather, strains deficient for both DCDC and PRC2 exhibit synthetic sensitivity to the topoisomerase I inhibitor Camptothecin and accumulate γH2A at heterochromatin. Together, these data suggest that PRC2 modulates the response to genotoxic stress.


Asunto(s)
Daño del ADN , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Histonas/metabolismo , Neurospora crassa/metabolismo , Proteína Metiltransferasas/metabolismo , Proteínas Fúngicas/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Metilación , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Neurospora crassa/genética , Proteína Metiltransferasas/genética
15.
Proc Natl Acad Sci U S A ; 112(36): 11407-12, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305953

RESUMEN

Plant damage promotes the interaction of lipoxygenases (LOXs) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides, and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed "jasmonates." As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA, and a series of related 14- and 12-carbon metabolites, collectively termed "death acids." 10-OPEA accumulation becomes wound inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death, which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Unlike jasmonates, functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions.


Asunto(s)
Ciclopentanos/metabolismo , Lipooxigenasa/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Zea mays/metabolismo , Ascomicetos/fisiología , Ciclopentanos/química , Ciclopentanos/farmacología , Cistatinas/genética , Cistatinas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Huésped-Patógeno , Immunoblotting , Lipooxigenasa/genética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxilipinas/química , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sesquiterpenos/química , Sesquiterpenos/farmacología , Zea mays/genética , Zea mays/microbiología , Fitoalexinas
16.
Nucleic Acids Res ; 43(21): e148, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26184871

RESUMEN

Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N(6)-methyladenine (6mA), 5-methylcytosine (5mC) and N(4)-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly and cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. In combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.


Asunto(s)
Citosina/análogos & derivados , ADN Bacteriano/química , Proteínas de Unión al ADN , Genoma Bacteriano , Proteínas Proto-Oncogénicas , Análisis de Secuencia de ADN/métodos , 5-Metilcitosina/análisis , Animales , Citosina/análisis , Firmicutes/genética , Ratones , Motivos de Nucleótidos , Sulfitos
17.
BMC Genomics ; 15: 475, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24929561

RESUMEN

BACKGROUND: Poplar seed hair is an environmental annoyance in northern China due to its abundance and widespread airborne distribution after maturation. The morphogenesis and molecular mechanisms of its development are not well understood, and little attention has been focused on the dynamics of its development. To better understand the mechanism of poplar seed hair development, paraffin sections were used to examine the initiation and elongation of poplar seed hairs. RNA-seq technology was also employed to provide a comprehensive overview of transcriptional changes that occur during seed hair development. RESULTS: The placenta at the base of ovary, was identified as the origin of seed hair development, which is in sharp contrast to cotton fibers that originate from epidermal cells of the seed coat. An enlarged cell nucleus in seed hair cells was also observed, which was supported by our gene ontology enrichment analysis. The significant enriched GO term of "endoreduplication" indicated that cycles of endoreduplication, bypassing normal mitosis, is the underlying mechanisms for the maintenance of the uni-cellular structure of seed hairs. By analyzing global changes in the transcriptome, many genes regulating cell cycle, cell elongation, cell well modification were identified. Additionally, in an analysis of differential expression, cellulose synthesis and cell wall biosynthesis-related biological processes were enriched, indicating that this component of fiber structure in poplar seed hairs is consistent with what is found in cotton fibers. Differentially expressed transcription factors exhibited a stage-specific up-regulation. A dramatic down-regulation was also revealed during the mid-to-late stage of poplar seed hair development, which may point to novel mechanisms regulating cell fate determination and cell elongation. CONCLUSIONS: This study revealed the initiation site of poplar seed hairs and also provided a comprehensive overview of transcriptome dynamics during the process of seed hair development. The high level of resolution on dynamic changes in the transcriptome provided in this study may serve as a valuable resource for developing a more complete understanding of this important biological process.


Asunto(s)
Populus/genética , Reproducción/genética , Semillas/genética , Pared Celular/genética , Pared Celular/metabolismo , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados , Factores de Transcripción , Transcriptoma
18.
Funct Integr Genomics ; 14(3): 517-29, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24870810

RESUMEN

Stem blister canker, caused by Botryosphaeria dothidea, is becoming the most serious disease of poplar in China. The molecular basis of the poplar in response to stem blister canker is not well understood. To reveal the global transcriptional changes of poplar to infection by B. dothidea, Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (NB) and pathogen-treated samples (WB) was performed, resulting in a total of 339,283 transcripts and 183,881 unigenes. A total of 206,586 transcripts were differentially expressed in response to pathogen stress (false discovery rate ≤0.05 and an absolute value of log2Ratio (NB/WB) ≥1). In enrichment analysis, energy metabolism and redox reaction-related macromolecules were accumulated significantly in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses, indicating components of dynamic defense against the fungus. A total of 852 transcripts (575 upregulated and 277 downregulated transcripts) potentially involved in plant-pathogen interaction were also differentially regulated, including genes encoding proteins linked to signal transduction (putative leucine-rich repeat (LRR) protein kinases and calcium-binding proteins), defense (pathogenesis-related protein 1), and cofactors (jasmonate-ZIM-domain-containing proteins and heat shock proteins). Moreover, transcripts encoding glutathione S-transferase (GST) were accumulated to high levels, revealing key genes and proteins potentially related to pathogen resistance. Poplar RNA sequence data were validated by quantitative real-time PCR (RT-qPCR), which revealed a highly reliability of the transcriptomic profiling data.


Asunto(s)
Ascomicetos/fisiología , Glutatión Transferasa/genética , Proteínas de Plantas/genética , Populus/enzimología , Glutatión Transferasa/metabolismo , Interacciones Huésped-Patógeno , Anotación de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Tallos de la Planta/microbiología , Populus/genética , Populus/microbiología , Estrés Fisiológico , Transcriptoma
20.
Int J Mol Sci ; 14(3): 6187-204, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23507754

RESUMEN

A novel sequence that functions as a promoter element for moderate constitutive expression of transgenes, designated as the PtMCP promoter, was isolated from the woody perennial Populus tomentosa. The PtMCP promoter was fused to the GUS reporter gene to characterize its expression pattern in different species. In stable Arabidopsis transformants, transcripts of the GUS reporter gene could be detected by RT-PCR in the root, stem, leaf, flower and silique. Further histochemical and fluorometric GUS activity assays demonstrated that the promoter could direct transgene expression in all tissues and organs, including roots, stems, rosette leaves, cauline leaves and flowers of seedlings and maturing plants. Its constitutive expression pattern was similar to that of the CaMV35S promoter, but the level of GUS activity was significantly lower than in CaMV35S promoter::GUS plants. We also characterized the promoter through transient expression in transgenic tobacco and observed similar expression patterns. Histochemical GUS staining and quantitative analysis detected GUS activity in all tissues and organs of tobacco, including roots, stems, leaves, flower buds and flowers, but GUS activity in PtMCP promoter::GUS plants was significantly lower than in CaMV35S promoter::GUS plants. Our results suggested that the PtMCP promoter from poplar is a constitutive promoter with moderate activity and that its function is presumably conserved in different species. Therefore, the PtMCP promoter may provide a practical choice to direct moderate level constitutive expression of transgenes and could be a valuable new tool in plant genetic engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA