Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 627(8002): 59-63, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232944

RESUMEN

Several theories have been proposed to describe the formation of black hole seeds in the early Universe and to explain the emergence of very massive black holes observed in the first thousand million years after the Big Bang1-3. Models consider different seeding and accretion scenarios4-7, which require the detection and characterization of black holes in the first few hundred million years after the Big Bang to be validated. Here we present an extensive analysis of the JWST-NIRSpec spectrum of GN-z11, an exceptionally luminous galaxy at z = 10.6, revealing the detection of the [NeIV]λ2423 and CII*λ1335 transitions (typical of active galactic nuclei), as well as semi-forbidden nebular lines tracing gas densities higher than 109 cm-3, typical of the broad line region of active galactic nuclei. These spectral features indicate that GN-z11 hosts an accreting black hole. The spectrum also reveals a deep and blueshifted CIVλ1549 absorption trough, tracing an outflow with velocity 800-1,000 km s-1, probably driven by the active galactic nucleus. Assuming local virial relations, we derive a black hole mass of log ( M BH / M ⊙ ) = 6.2 ± 0.3 , accreting at about five times the Eddington rate. These properties are consistent with both heavy seeds scenarios and scenarios considering intermediate and light seeds experiencing episodic super-Eddington phases. Our finding explains the high luminosity of GN-z11 and can also provide an explanation for its exceptionally high nitrogen abundance.

2.
Nature ; 629(8010): 53-57, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447669

RESUMEN

Local and low-redshift (z < 3) galaxies are known to broadly follow a bimodal distribution: actively star-forming galaxies with relatively stable star-formation rates and passive systems. These two populations are connected by galaxies in relatively slow transition. By contrast, theory predicts that star formation was stochastic at early cosmic times and in low-mass systems1-4. These galaxies transitioned rapidly between starburst episodes and phases of suppressed star formation, potentially even causing temporary quiescence-so-called mini-quenching events5,6. However, the regime of star-formation burstiness is observationally highly unconstrained. Directly observing mini-quenched galaxies in the primordial Universe is therefore of utmost importance to constrain models of galaxy formation and transformation7,8. Early quenched galaxies have been identified out to redshift z < 5 (refs. 9-12) and these are all found to be massive (M⋆ > 1010 M⊙) and relatively old. Here we report a (mini-)quenched galaxy at z = 7.3, when the Universe was only 700 Myr old. The JWST/NIRSpec spectrum is very blue (U-V = 0.16 ± 0.03 mag) but exhibits a Balmer break and no nebular emission lines. The galaxy experienced a short starburst followed by rapid quenching; its stellar mass (4-6 × 108 M⊙) falls in a range that is sensitive to various feedback mechanisms, which can result in perhaps only temporary quenching.


Asunto(s)
Galaxias , Factores de Tiempo , Estrellas Celestiales , Medio Ambiente Extraterrestre/química
3.
Nature ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074505

RESUMEN

The first observations of JWST have revolutionized our understanding of the Universe by identifying for the first time galaxies at z ∼ 13 1-3. In addition, the discovery of many luminous galaxies at Cosmic Dawn ( z > 10 ) has suggested that galaxies developed rapidly, in apparent tension with many standard models4-8. However, most of these galaxies lack spectroscopic confirmation, so their distances and properties are uncertain. We present JADES JWST/NIRSpec spectroscopic confirmation of two luminous galaxies at redshifts of z = 14.32 - 0.20 + 0.08 and z = 13.90 ± 0.17 . The spectra reveal ultraviolet continua with prominent Lyman- α breaks but no detected emission lines. This discovery proves that luminous galaxies were already in place 300 million years after the Big Bang and are more common than what was expected before JWST. The most distant of the two galaxies is unexpectedly luminous and is spatially resolved with a radius of 260 parsecs. Considering also the very steep ultraviolet slope of the second galaxy, we conclude that both are dominated by stellar continuum emission, showing that the excess of luminous galaxies in the early Universe cannot be entirely explained by accretion onto black holes. Galaxy formation models will need to address the existence of such large and luminous galaxies so early in cosmic history.

4.
Nature ; 621(7978): 267-270, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37467786

RESUMEN

Large dust reservoirs (up to approximately 108 M⊙) have been detected1-3 in galaxies out to redshift z ≃ 8, when the age of the Universe was only about 600 Myr. Generating substantial amounts of dust within such a short timescale has proven challenging for theories of dust formation4,5 and has prompted the revision of the modelling of potential sites of dust production6-8, such as the atmospheres of asymptotic giant branch stars in low-metallicity environments, supernova ejecta and the accelerated growth of grains in the interstellar medium. However, degeneracies between different evolutionary pathways remain when the total dust mass of galaxies is the only available observable. Here we report observations of the 2,175 Å dust attenuation feature, which is well known in the Milky Way and galaxies at z ≲ 3 (refs. 9-11), in the near-infrared spectra of galaxies up to z ≃ 7, corresponding to the first billion years of cosmic time. The relatively short timescale implied for the formation of carbonaceous grains giving rise to this feature12 suggests a rapid production process, possibly in Wolf-Rayet stars or supernova ejecta.

5.
PLoS Pathog ; 19(1): e1010961, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36626407

RESUMEN

CRISPR-based genome editing technology is revolutionizing prokaryotic research, but it has been rarely studied in bacterial plant pathogens. Here, we have developed a targeted genome editing method with no requirement of donor templates for convenient and efficient gene knockout in Xanthomonas oryzae pv. oryzae (Xoo), one of the most important bacterial pathogens on rice, by employing the heterologous CRISPR/Cas12a from Francisella novicida and NHEJ proteins from Mycobacterium tuberculosis. FnCas12a nuclease generated both small and large DNA deletions at the target sites as well as it enabled multiplex genome editing, gene cluster deletion, and plasmid curing in the Xoo PXO99A strain. Accordingly, a non-TAL effector-free polymutant strain PXO99AD25E, which lacks all 25 xop genes involved in Xoo pathogenesis, has been engineered through iterative genome editing. Whole-genome sequencing analysis indicated that FnCas12a did not have a noticeable off-target effect. In addition, we revealed that these strategies are also suitable for targeted genome editing in another bacterial plant pathogen Pseudomonas syringae pv. tomato (Pst). We believe that our bacterial genome editing method will greatly expand the CRISPR study on microorganisms and advance our understanding of the physiology and pathogenesis of Xoo.


Asunto(s)
Sistemas CRISPR-Cas , Oryza , Xanthomonas , Proteínas Bacterianas/metabolismo , Edición Génica/métodos , Genoma Bacteriano , Oryza/microbiología , Plásmidos , Xanthomonas/genética
7.
Plant Biotechnol J ; 21(12): 2525-2545, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37578160

RESUMEN

Plant leaf senescence, caused by multiple internal and environmental factors, has an important impact on agricultural production. The lectin receptor-like kinase (LecRLK) family members participate in plant development and responses to biotic and abiotic stresses, but their roles in regulating leaf senescence remain elusive. Here, we identify and characterize a rice premature withered leaf 1 (pwl1) mutant, which exhibits premature leaf senescence throughout the plant life cycle. The pwl1 mutant displayed withered and whitish leaf tips, decreased chlorophyll content, and accelerated chloroplast degradation. Map-based cloning revealed an amino acid substitution (Gly412Arg) in LOC_Os03g62180 (PWL1) was responsible for the phenotypes of pwl1. The expression of PWL1 was detected in all tissues, but predominantly in tillering and mature leaves. PWL1 encodes a G-type LecRLK with active kinase and autophosphorylation activities. PWL1 is localized to the plasma membrane and can self-associate, mainly mediated by the plasminogen-apple-nematode (PAN) domain. Substitution of the PAN domain significantly diminished the self-interaction of PWL1. Moreover, the pwl1 mutant showed enhanced reactive oxygen species (ROS) accumulation, cell death, and severe DNA fragmentation. RNA sequencing analysis revealed that PWL1 was involved in the regulation of multiple biological processes, like carbon metabolism, ribosome, and peroxisome pathways. Meanwhile, interfering of biological processes induced by the PWL1 mutation also enhanced heat sensitivity and resistance to bacterial blight and bacterial leaf streak with excessive accumulation of ROS and impaired chloroplast development in rice. Natural variation analysis indicated more variations in indica varieties, and the vast majority of japonica varieties harbour the PWL1Hap1 allele. Together, our results suggest that PWL1, a member of LecRLKs, exerts multiple roles in regulating plant growth and development, heat-tolerance, and resistance to bacterial pathogens.


Asunto(s)
Oryza , Termotolerancia , Xanthomonas , Especies Reactivas de Oxígeno/metabolismo , Oryza/metabolismo , Senescencia de la Planta , Lectinas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163443

RESUMEN

Executor (E) genes comprise a new type of plant resistance (R) genes, identified from host-Xanthomonas interactions. The Xanthomonas-secreted transcription activation-like effectors (TALEs) usually function as major virulence factors, which activate the expression of the so-called "susceptibility" (S) genes for disease development. This activation is achieved via the binding of the TALEs to the effector-binding element (EBE) in the S gene promoter. However, host plants have evolved EBEs in the promoters of some otherwise silent R genes, whose expression directly causes a host cell death that is characterized by a hypersensitive response (HR). Such R genes are called E genes because they trap the pathogen TALEs in order to activate expression, and the resulting HR prevents pathogen growth and disease development. Currently, deploying E gene resistance is becoming a major component in disease resistance breeding, especially for rice bacterial blight resistance. Currently, the biochemical mechanisms, or the working pathways of the E proteins, are still fuzzy. There is no significant nucleotide sequence homology among E genes, although E proteins share some structural motifs that are probably associated with the signal transduction in the effector-triggered immunity. Here, we summarize the current knowledge regarding TALE-type avirulence proteins, E gene activation, the E protein structural traits, and the classification of E genes, in order to sharpen our understanding of the plant E genes.


Asunto(s)
Resistencia a la Enfermedad , Proteínas de Plantas/genética , Plantas/microbiología , Xanthomonas/patogenicidad , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata , Plantas/genética , Regiones Promotoras Genéticas , Efectores Tipo Activadores de la Transcripción/metabolismo , Xanthomonas/metabolismo
9.
Int J Mol Sci ; 23(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35742990

RESUMEN

Bacterial blight (BB) and bacterial leaf streak (BLS), caused by phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively, are the most serious bacterial diseases of rice, while blast, caused by Magnaporthe oryzae (M. oryzae), is the most devastating fungal disease in rice. Generating broad-spectrum resistance to these diseases is one of the key approaches for the sustainable production of rice. Executor (E) genes are a unique type of plant resistance (R) genes, which can specifically trap transcription activator-like effectors (TALEs) of pathogens and trigger an intense defense reaction characterized by a hypersensitive response in the host. This strong resistance is a result of programed cell death induced by the E gene expression that is only activated upon the binding of a TALE to the effector-binding element (EBE) located in the E gene promoter during the pathogen infection. Our previous studies revealed that the E gene Xa23 has the broadest and highest resistance to BB. To investigate whether the Xa23-mediated resistance is efficient against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of BLS, we generated a new version of Xa23, designated as Xa23p1.0, to specifically trap the conserved TALEs from multiple Xoc strains. The results showed that the Xa23p1.0 confers broad resistance against both BB and BLS in rice. Moreover, our further experiment on the Xa23p1.0 transgenic plants firstly demonstrated that the E-gene-mediated defensive reaction is also effective against M. oryzae, the causal agent of the most devastating fungal disease in rice. Our current work provides a new strategy to exploit the full potential of the E-gene-mediated disease resistance in rice.


Asunto(s)
Oryza , Xanthomonas , Resistencia a la Enfermedad/genética , Expresión Génica Ectópica , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Efectores Tipo Activadores de la Transcripción/metabolismo , Xanthomonas/genética
10.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32826214

RESUMEN

Complete ammonia-oxidizing (comammox) bacteria play key roles in environmental nitrogen cycling and all belong to the genus Nitrospira, which was originally believed to include only strict nitrite-oxidizing bacteria (sNOB). Thus, differential estimation of sNOB abundance from that of comammox Nitrospira has become problematic, since both contain nitrite oxidoreductase genes that serve as common targets for sNOB detection. Herein, we developed novel comammox Nitrospira clade A- and B-specific primer sets targeting the α-subunit of the ammonia monooxygenase gene (amoA) and a sNOB-specific primer set targeting the cyanase gene (cynS) for quantitative PCR (qPCR). The high coverage and specificity of these primers were checked by use of metagenome and metatranscriptome data sets. Efficient and specific amplification with these primers was demonstrated using various environmental samples. Using the newly designed primers, we successfully estimated the abundances of comammox Nitrospira and sNOB in samples from two chloramination-treated drinking water systems and found that, in most samples, comammox Nitrospira clade A was the dominant type of Nitrospira and also served as the primary ammonia oxidizer. Compared with other ammonia oxidizers, comammox Nitrospira had a higher abundance in process water samples in these two drinking water systems. We also demonstrated that sNOB can be readily misrepresented by an earlier method, calculated by subtracting the comammox Nitrospira abundance from the total Nitrospira abundance, especially when the comammox Nitrospira proportion is relatively high. The new primer sets were successfully applied to comammox Nitrospira and sNOB quantification, which may prove useful in understanding the roles of Nitrospira in nitrification in various ecosystems.IMPORTANCENitrospira is a dominant nitrite-oxidizing bacterium in many artificial and natural environments. The discovery of complete ammonia oxidizers in the genus Nitrospira prevents the use of previously identified primers targeting the Nitrospira 16S rRNA gene or nitrite oxidoreductase (nxr) gene for differential determination of strict nitrite-oxidizing bacteria (sNOB) in the genus Nitrospira and among comammox bacteria in this genus. We designed three novel primer sets that enabled quantification of comammox Nitrospira clades A and B and sNOB with high coverage, specificity, and accuracy in various environments. With the designed primer sets, sNOB and comammox Nitrospira were differentially estimated in drinking water systems, and we found that comammox clade A predominated over sNOB and other ammonia oxidizers in process water samples. Accurate quantification of comammox Nitrospira and sNOB by use of the newly designed primers will provide essential information for evaluating the contribution of Nitrospira to nitrification in various ecosystems.


Asunto(s)
Amoníaco/metabolismo , Bacterias/clasificación , Cartilla de ADN/análisis , Nitritos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Oxidación-Reducción
13.
Int J Mol Sci ; 19(10)2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279356

RESUMEN

Bacterial blight (BB) and bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, respectively, are two devastating diseases in rice planting areas worldwide. It has been proven that adoption of rice resistance is the most effective, economic, and environment-friendly strategy to avoid yield loss caused by BB and BLS. As a model system for plant-pathogen interaction, the rice-X. oryzae pathosystem has been intensively investigated in the past decade. Abundant studies have shown that the resistance and susceptibility of rice to X. oryzae is determined by molecular interactions between rice genes or their products and various pathogen effectors. In this review, we briefly overviewed the literature regarding the diverse interactions, focusing on recent advances in uncovering mechanisms of rice resistance and X. oryzae virulence. Our analysis and discussions will not only be helpful for getting a better understanding of coevolution of the rice innate immunity and X. oryzae virulence, but it will also provide new insights for application of plant R genes in crop breeding.


Asunto(s)
Oryza/microbiología , Xanthomonas/patogenicidad , Resistencia a la Enfermedad/genética , Genes de Plantas , Modelos Biológicos , Oryza/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
14.
Int J Mol Sci ; 19(3)2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29498672

RESUMEN

Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo. In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23) and JG30 (without Xa23), before and after infection of the Xoo strain, PXO99A, was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23-mediated resistance.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transcriptoma , Xanthomonas/fisiología , Biología Computacional/métodos , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Anotación de Secuencia Molecular , Plantas Modificadas Genéticamente , Reproducibilidad de los Resultados , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Anal Chem ; 87(10): 5294-301, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25914940

RESUMEN

Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plant-pest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between rice-bacterium and soybean-aphid were investigated as two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plant-pest interactions. Specifically, salicylic acid and isoflavone based resistance was visualized in the soybean-aphid system and antibiotic diterpenoids in rice-bacterium interactions.


Asunto(s)
Áfidos/fisiología , Glycine max/parasitología , Interacciones Huésped-Parásitos , Interacciones Huésped-Patógeno , Oryza/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Áfidos/química , Oryza/química , Glycine max/química
17.
Mol Plant Microbe Interact ; 27(9): 983-95, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25105804

RESUMEN

The closely related plant pathogens Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae cause bacterial leaf streak (BLS) and bacterial leaf blight (BLB), respectively, in rice. Unlike X. oryzae pv. oryzae, endogenous avirulence-resistance (avr-R) gene interactions have not been identified in the X. oryzae pv. oryzicola-rice pathosystem, though both X. oryzae pv. oryzicola and X. oryzae pv. oryzae possess transcriptional activator-like effectors (TALE), which are known to modulate R or S genes in rice. In this report, avrXa7, avrXa10, and avrXa27 from X. oryzae pv. oryzae were transferred into YNB0-17 and RS105, hypovirulent and hypervirulent strains, respectively, of X. oryzae pv. oryzicola. When YNB0-17 containing avrXa7, avrXa10, or avrXa27 was inoculated to rice, hypersensitive responses (HR) were elicited in rice cultivars containing the R genes Xa7, Xa10, and Xa27, respectively. By contrast, RS105 expressing avrXa27 elicited an HR in a rice cultivar containing Xa27 but the expression of avrXa7 and avrXa10 in RS105 did not result in HR in rice cultivars containing Xa7 and Xa10, correspondingly. Southern blot analysis demonstrated that YNB0-17 possesses only approximately nine putative tale genes, whereas the hypervirulent RS105 contains at least 20. Although YNB0-17 contains an intact type III secretion system (T3SS), its genome is lacking the T3SS effector genes avrRxo1 and xopO, which are present in RS105. The introduction of avrRxo1 and xopO into YNB0-17 did not suppress avrXa7- or avrXa10-triggered immunity in rice. However, the transference of individual tale genes from RS105 into YNB0-17 led to the identification of tal6 and tal11a that suppressed avrXa7-Xa7-mediated defense. Thus, YNB0-17 may be a useful recipient for discovering such suppressors. This is the first report that co-evolutionally generated tale genes in X. oryzae pv. oryzicola suppress gene-for-gene defense against BLB, which may explain the lack of BLS-resistant cultivars.


Asunto(s)
Proteínas Bacterianas/genética , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Transactivadores/genética , Xanthomonas/patogenicidad , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , ADN Bacteriano/genética , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad de la Especie , Transactivadores/metabolismo , Efectores Tipo Activadores de la Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia , Xanthomonas/genética , Xanthomonas/aislamiento & purificación , Xanthomonas/fisiología
18.
Appl Environ Microbiol ; 80(13): 3908-19, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24747909

RESUMEN

The type III secretion system (T3SS), encoded by hrp (hypersensitive response and pathogenicity) genes in Gram-negative phytopathogenic bacteria, delivers repertoires of T3SS effectors (T3SEs) into plant cells to trigger the hypersensitive response (HR) in nonhost or resistant-host plants and promote pathogenicity in susceptible plants. The expression of hrp genes in Xanthomonas is regulated by two key regulatory proteins, HrpG and HrpX. However, the interactions between hrp gene products in directing T3SE secretion are largely unknown. Here we demonstrated that HrcT of X. oryzae pv. oryzicola functions as a T3SS component and positively regulates the expression of hrpX. Transcription of hrcT occurs via two distinct promoters; one (T1) is with the hrpB operon and the second (T3) within hrpB7 Via either promoter T1 or T3, the defect in Hrp phenotype by hrcT deletion was corrected in the presence of hrcT only from Xanthomonas species but not from other phytopathogenic bacteria. An N-terminally truncated HrcT was able to bind the hrpX promoter and activate the expression of hrpX, supporting that HrcT is a positive regulator of hrpX. A revised model showing the regulatory interactions between HrcT, HrpX, and HrpG is proposed.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Sistemas de Secreción Bacterianos , Regulación Bacteriana de la Expresión Génica , Transactivadores/metabolismo , Factores de Transcripción/biosíntesis , Xanthomonas/genética , Xanthomonas/metabolismo , Proteínas Bacterianas/genética , ADN Bacteriano/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Regiones Promotoras Genéticas , Unión Proteica , Transactivadores/genética , Factores de Transcripción/genética , Transcripción Genética
19.
Phytopathology ; 104(7): 672-82, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24423401

RESUMEN

Xanthomonas oryzae pv. oryzicola causes bacterial leaf streak (BLS), a devastating disease of rice in Asia countries. X. oryzae pv. oryzicola utilizes repertoires of transcriptional activator-like effectors (TALEs) to manipulate host resistance or susceptibility; thus, TALEs can determine the outcome of BLS. In this report, we studied genetic diversity in putative tale genes of 65 X. oryzae pv. oryzicola strains that originated from nine provinces of southern China. Genomic DNAs from the 65 strains were digested with BamHI and hybridized with an internal fragment of avrXa3, a tale gene originating from the related pathogen, X. oryzae pv. oryzae, which causes bacterial leaf blight (BLB). Southern blot analysis indicated that the strains contained a variable number (9 to 22) of avrXa3-hybridizing fragments (e.g., putative tale genes). Based on the number and size of hybridizing bands, strains were classified into 14 genotypes (designated 1 to 14), and genotypes 3 and 10 represented 29.23 and 24.64% of the total, respectively. A high molecular weight BamHI fragment (HMWB; ≈6.0 kb) was present in 12 of the 14 genotypes, and sequence analysis of the HMWB revealed the presence of a C-terminally truncated tale, an insertion element related to IS1403, and genes encoding phosphoglycerate mutase and endonuclease V. Primers were developed from the 6.0-kb HMWB fragment and showed potential in genotyping X. oryzae pv. oryzicola strains by polymerase chain reaction. Virulence of X. oryzae pv. oryzicola strains was assessed on 23 rice cultivars containing different resistance genes for BLB. The X. oryzae pv. oryzicola strains could be grouped into 14 pathotypes (I to XIV), and the grouping of strains was almost identical to the categories determined by genotypic analysis. In general, strains containing higher numbers of putative tale genes were more virulent on rice than strains containing fewer tales. The results also indicate that there are no gene-for-gene relationships between the tested rice lines and X. oryzae pv. oryzicola strains. To our knowledge, this is the first description of genetic diversity of X. oryzae pv. oryzicola strains based on tale gene analysis.


Asunto(s)
Proteínas Bacterianas/genética , Variación Genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Secuencia de Bases , China , Análisis por Conglomerados , Cartilla de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Epistasis Genética , Genotipo , Datos de Secuencia Molecular , Mutación , Hibridación de Ácido Nucleico , Hojas de la Planta/microbiología , Análisis de Secuencia de ADN , Virulencia , Xanthomonas/clasificación , Xanthomonas/aislamiento & purificación , Xanthomonas/patogenicidad
20.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 177-189, 2024 Jan 25.
Artículo en Zh | MEDLINE | ID: mdl-38258640

RESUMEN

Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.


Asunto(s)
Hierro , Xanthomonas axonopodis , Glycine max , Virulencia , Xanthomonas axonopodis/genética , Peróxido de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA