Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 327(3): F519-F531, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024357

RESUMEN

Diabetes mellitus is one of the leading causes of chronic kidney disease and its progression to end-stage kidney disease (ESKD). Diabetic kidney disease (DKD) is characterized by glomerular hypertrophy, hyperfiltration, inflammation, and the onset of albuminuria, together with a progressive reduction in glomerular filtration rate. This progression is further accompanied by tubulointerstitial inflammation and fibrosis. Factors such as genetic predisposition, epigenetic modifications, metabolic derangements, hemodynamic alterations, inflammation, and inappropriate renin-angiotensin-aldosterone system (RAAS) activity contribute to the onset and progression of DKD. In this context, decades of work have focused on glycemic and blood pressure reduction strategies, especially targeting the RAAS to slow disease progression. Although much of the work has focused on targeting angiotensin II, emerging data support that the mineralocorticoid receptor (MR) is integral in the development and progression of DKD. Molecular mechanisms linked to the underlying pathophysiological changes derived from MR activation include vascular endothelial and epithelial cell responses to oxidative stress and inflammation. These responses lead to alterations in the microcirculatory environment, the abnormal release of extracellular vesicles, gut dysbiosis, epithelial-mesenchymal transition, and kidney fibrosis. Herein, we present recent experimental and clinical evidence on the MR in DKD onset and progress along with new MR-based strategies for the treatment and prevention of DKD.


Asunto(s)
Nefropatías Diabéticas , Receptores de Mineralocorticoides , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Humanos , Receptores de Mineralocorticoides/metabolismo , Animales , Sistema Renina-Angiotensina , Riñón/metabolismo , Riñón/patología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Antagonistas de Receptores de Mineralocorticoides/farmacología , Transducción de Señal , Progresión de la Enfermedad
2.
Am J Physiol Endocrinol Metab ; 327(4): E533-E543, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39196801

RESUMEN

Consumption of a Western diet (WD) increases CD36 expression in vascular, hepatic, and skeletal muscle tissues promoting lipid metabolic disorders and insulin resistance. We further examined the role of endothelial cell-specific CD36 (ECCD36) signaling in contributing to skeletal muscle lipid metabolic disorders, insulin resistance, and their underlying molecular mechanisms. Female ECCD36 wild-type (ECCD36+/+) and knock-out (ECCD36-/-) mice, aged 6 wk, were provided with either a WD or a standard chow diet for a duration of 16 wk. ECCD36+/+ WD mice were characterized by elevated fasting plasma glucose and insulin levels, increased homeostatic model assessment for insulin resistance, and glucose intolerance that was blunted in ECCD36-/- mice. Improved insulin sensitivity in ECCD36-/- mice was characterized by increased phosphoinositide 3-kinases/protein kinase B signaling that further augmented glucose transporter type 4 expression and glucose uptake. Meanwhile, 16 wk of WD feeding also increased skeletal muscle free fatty acid (FFA) and lipid accumulation, without any observed changes in plasma FFA levels. These lipid metabolic disorders were blunted in ECCD36-/- mice. Moreover, ECCD36 also mediated in vitro palmitic acid-induced lipid accumulation in cultured ECs, subsequently leading to the release of FFAs into the culture media. Furthermore, consumption of a WD increased FFA oxidation, mitochondrial dysfunction, impaired mitochondrial respiratory, skeletal muscle fiber type transition, and fibrosis. These WD-induced abnormalities were blunted in ECCD36-/- mice. These findings demonstrate that endothelial-specific ECCD36 signaling participates in skeletal muscle FFA uptake, ectopic lipid accumulation, mitochondrial dysfunction, insulin resistance, and associated skeletal muscle dysfunction in diet-induced obesity.NEW & NOTEWORTHY ECCD36 exerts "extra endothelial cell" actions in skeletal muscle insulin resistance. ECCD36 is a major mediator of Western diet-induced lipid metabolic disorders and insulin resistance in skeletal muscle. Mitochondrial dysfunction is associated with diet-induced CD36 activation and related skeletal muscle insulin resistance.


Asunto(s)
Antígenos CD36 , Dieta Occidental , Resistencia a la Insulina , Músculo Esquelético , Transducción de Señal , Animales , Femenino , Ratones , Antígenos CD36/metabolismo , Antígenos CD36/genética , Dieta Occidental/efectos adversos , Células Endoteliales/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo
3.
Plant Cell ; 33(5): 1430-1446, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33730165

RESUMEN

Polyploidy or whole-genome duplication (WGD) is widespread in plants and is a key driver of evolution and speciation, accompanied by rapid and dynamic changes in genomic structure and gene expression. The 3D structure of the genome is intricately linked to gene expression, but its role in transcription regulation following polyploidy and domestication remains unclear. Here, we generated high-resolution (∼2 kb) Hi-C maps for cultivated soybean (Glycine max), wild soybean (Glycine soja), and common bean (Phaseolus vulgaris). We found polyploidization in soybean may induce architecture changes of topologically associating domains and subsequent diploidization led to chromatin topology alteration around chromosome-rearrangement sites. Compared with single-copy and small-scale duplicated genes, WGD genes displayed more long-range chromosomal interactions and were coupled with higher levels of gene expression and chromatin accessibilities but void of DNA methylation. Interestingly, chromatin loop reorganization was involved in expression divergence of the genes during soybean domestication. Genes with chromatin loops were under stronger artificial selection than genes without loops. These findings provide insights into the roles of dynamic chromatin structures on gene expression during polyploidization, diploidization, and domestication of soybean.


Asunto(s)
Cromatina/química , Domesticación , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Poliploidía , Cromosomas de las Plantas/genética , Diploidia , Duplicación de Gen , Genoma de Planta , Phaseolus/genética , Glycine max/anatomía & histología
4.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255878

RESUMEN

Clinical and basic studies have documented that both hyperglycemia and insulin-resistance/hyperinsulinemia not only constitute metabolic disorders contributing to cardiometabolic syndrome, but also predispose to diabetic vasculopathy, which refers to diabetes-mellitus-induced microvascular and macrovascular complications, including retinopathy, neuropathy, atherosclerosis, coronary artery disease, hypertension, and peripheral artery disease. The underlying molecular and cellular mechanisms include inappropriate activation of the renin angiotensin-aldosterone system, mitochondrial dysfunction, excessive oxidative stress, inflammation, dyslipidemia, and thrombosis. These abnormalities collectively promote metabolic disorders and further promote diabetic vasculopathy. Recent evidence has revealed that endothelial progenitor cell dysfunction, gut dysbiosis, and the abnormal release of extracellular vesicles and their carried microRNAs also contribute to the development and progression of diabetic vasculopathy. Therefore, clinical control and treatment of diabetes mellitus, as well as the development of novel therapeutic strategies are crucial in preventing cardiometabolic syndrome and related diabetic vasculopathy. The present review focuses on the relationship between insulin resistance and diabetes mellitus in diabetic vasculopathy and related cardiovascular disease, highlighting epidemiology and clinical characteristics, pathophysiology, and molecular mechanisms, as well as management strategies.


Asunto(s)
Aterosclerosis , Diabetes Mellitus , Angiopatías Diabéticas , Resistencia a la Insulina , Síndrome Metabólico , Enfermedades Vasculares Periféricas , Humanos
5.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R90-R101, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36440901

RESUMEN

Widespread consumption of diets high in fat and fructose (Western diet, WD) has led to increased prevalence of obesity and diastolic dysfunction (DD). DD is a prominent feature of heart failure with preserved ejection fraction (HFpEF). However, the underlying mechanisms of DD are poorly understood, and treatment options are still limited. We have previously shown that deletion of the cell-specific mineralocorticoid receptor in endothelial cells (ECMR) abrogates DD induced by WD feeding in female mice. However, the specific role of ECMR activation in the pathogenesis of DD in male mice has not been clarified. Therefore, we fed 4-wk-old ECMR knockout (ECMRKO) male mice and littermates (LM) with either a WD or chow diet (CD) for 16 wk. WD feeding resulted in DD characterized by increased left ventricle (LV) filling pressure (E/e') and diastolic stiffness [E/e'/LV inner diameter at end diastole (LVIDd)]. Compared with CD, WD in LM resulted in increased myocardial macrophage infiltration, oxidative stress, and increased myocardial phosphorylation of Akt, in concert with decreased phospholamban phosphorylation. WD also resulted in focal cardiomyocyte remodeling, characterized by areas of sarcomeric disorganization, loss of mitochondrial electron density, and mitochondrial fragmentation. Conversely, WD-induced DD and associated biochemical and structural abnormalities were prevented by ECMR deletion. In contrast with our previously reported observations in females, WD-fed male mice exhibited enhanced Akt signaling and a lower magnitude of cardiac injury. Collectively, our data support a critical role for ECMR in obesity-induced DD and suggest critical mechanistic differences in the genesis of DD between males and females.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Femenino , Masculino , Animales , Ratones , Células Endoteliales/patología , Insuficiencia Cardíaca/complicaciones , Receptores de Mineralocorticoides/genética , Ratones Obesos , Proteínas Proto-Oncogénicas c-akt , Volumen Sistólico , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control , Dieta Occidental , Obesidad/etiología
6.
J Mol Cell Cardiol ; 167: 32-39, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35331697

RESUMEN

Sphingomyelinases ensure ceramide production and play an integral role in cell turnover, inward budding of vesicles and outward release of exosomes. Recent data indicate a unique role for neutral sphingomyelinase (nSMase) in the control of ceramide-dependent exosome release and inflammatory pathways. Further, while inhibition of nSMase in vascular tissue attenuates the progression of atherosclerosis, little is known regarding its role on metabolic signaling and arterial vasomotor function. Accordingly, we hypothesized that nSMase inhibition with GW4869, would attenuate Western diet (WD) - induced increases in aortic stiffness through alterations in pathways which lead to oxidative stress, inflammation and vascular remodeling. Six week-old female C57BL/6L mice were fed either a WD containing excess fat (46%) and fructose (17.5%) for 16 weeks or a standard chow diet (CD). Mice were variably treated with GW4869 (2.0 µg/g body weight, intraperitoneal injection every 48 h for 12 weeks). WD feeding increased nSMase2 expression and activation while causing aortic stiffening and impaired vasorelaxation as determined by pulse wave velocity (PWV) and wire myography, respectively. Moreover, these functional abnormalities were associated with aortic remodeling and attenuated AMP-activated protein kinase, Sirtuin 1, and endothelial nitric oxide synthase activation. GW4869 treatment prevented the WD-induced increases in nSMase activation, PWV, and impaired endothelium dependent/independent vascular relaxation. GW4869 also inhibited WD-induced aortic CD36 expression, lipid accumulation, oxidative stress, inflammatory responses, as well as aortic remodeling. These findings indicate that targeting nSMase prevents diet - induced aortic stiffening and impaired vascular relaxation by attenuating oxidative stress, inflammation and adverse vascular remodeling.


Asunto(s)
Rigidez Vascular , Animales , Ceramidas , Dieta Occidental/efectos adversos , Femenino , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de la Onda del Pulso , Esfingomielina Fosfodiesterasa , Remodelación Vascular
7.
Plant J ; 105(3): 678-690, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33131144

RESUMEN

Bread wheat (Triticum aestivum) is an allohexaploid that was formed via two allopolyploidization events. Growing evidence suggests histone modifications are involved in the response to 'genomic shock' and environmental adaptation during polyploid formation and evolution. However, the role of histone modifications, especially histone H3 lysine-27 dimethylation (H3K27me2), in genome evolution remains elusive. Here we analyzed H3K27me2 and H3K27me3 profiles in hexaploid wheat and its tetraploid and diploid relatives. Although H3K27me3 levels were relatively stable among wheat species with different ploidy levels, H3K27me2 intensities increased concurrent with increased ploidy levels, and H3K27me2 peaks were colocalized with massively amplified DTC transposons (CACTA family) in euchromatin, which may silence euchromatic transposons to maintain genome stability during polyploid wheat evolution. Consistently, the distribution of H3K27me2 is mutually exclusive with another repressive histone mark, H3K9me2, that mainly silences transposons in heterochromatic regions. Remarkably, the regions with low H3K27me2 levels (named H3K27me2 valleys) were associated with the formation of DNA double-strand breaks in genomes of wheat, maize (Zea mays) and Arabidopsis. Our results provide a comprehensive view of H3K27me2 and H3K27me3 distributions during wheat evolution, which support roles for H3K27me2 in silencing euchromatic transposons to maintain genome stability and in modifying genetic recombination landscapes. These genomic insights may empower breeding improvement of crops.


Asunto(s)
Inestabilidad Genómica , Histonas/metabolismo , Poliploidía , Triticum/genética , Secuenciación de Inmunoprecipitación de Cromatina , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN , Evolución Molecular , Genoma de Planta , Histonas/genética , Lisina/metabolismo , Recombinación Genética , Triticum/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 322(2): H167-H180, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890280

RESUMEN

Consumption of diets high in fat, sugar, and salt (Western diet, WD) is associated with accelerated arterial stiffening, a major independent risk factor for cardiovascular disease (CVD). Women with obesity are more prone to develop arterial stiffening leading to more frequent and severe CVD compared with men. As tissue transglutaminase (TG2) has been implicated in vascular stiffening, our goal herein was to determine the efficacy of cystamine, a nonspecific TG2 inhibitor, at reducing vascular stiffness in female mice chronically fed a WD. Three experimental groups of female mice were created. One was fed regular chow diet (CD) for 43 wk starting at 4 wk of age. The second was fed a WD for the same 43 wk, whereas a third cohort was fed WD, but also received cystamine (216 mg/kg/day) in the drinking water during the last 8 wk on the diet (WD + C). All vascular stiffness parameters assessed, including aortic pulse wave velocity and the incremental modulus of elasticity of isolated femoral and mesenteric arteries, were significantly increased in WD- versus CD-fed mice, and reduced in WD + C versus WD-fed mice. These changes coincided with respectively augmented and diminished vascular wall collagen and F-actin content, with no associated effect in blood pressure. In cultured human vascular smooth muscle cells, cystamine reduced TG2 activity, F-actin:G-actin ratio, collagen compaction capacity, and cellular stiffness. We conclude that cystamine treatment represents an effective approach to reduce vascular stiffness in female mice in the setting of WD consumption, likely because of its TG2 inhibitory capacity.NEW & NOTEWORTHY This study evaluates the novel role of transglutaminase 2 (TG2) inhibition to directly treat vascular stiffness. Our data demonstrate that cystamine, a nonspecific TG2 inhibitor, improves vascular stiffness induced by a diet rich in fat, fructose, and salt. This research suggests that TG2 inhibition might bear therapeutic potential to reduce the disproportionate burden of cardiovascular disease in females in conditions of chronic overnutrition.


Asunto(s)
Cistamina/farmacología , Dieta Occidental/efectos adversos , Inhibidores Enzimáticos/farmacología , Proteína Glutamina Gamma Glutamiltransferasa 2/antagonistas & inhibidores , Rigidez Vascular/efectos de los fármacos , Actinas/metabolismo , Animales , Aorta/metabolismo , Aorta/fisiología , Células Cultivadas , Colágeno/metabolismo , Elasticidad , Femenino , Humanos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiología , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Análisis de la Onda del Pulso
9.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R253-R262, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35107025

RESUMEN

Mineralocorticoid receptor (MR) activation plays an important role in hepatic insulin resistance. However, the precise mechanisms by which MR activation promotes hepatic insulin resistance remains unclear. Therefore, we sought to investigate the roles and mechanisms by which MR activation promotes Western diet (WD)-induced hepatic steatosis and insulin resistance. Six-week-old C57BL6J mice were fed either mouse chow or a WD, high in saturated fat and refined carbohydrates, with or without the MR antagonist spironolactone (1 mg/kg/day) for 16 wk. WD feeding resulted in systemic insulin resistance at 8 and 16 wk. WD also induced impaired hepatic insulin metabolic signaling via phosphoinositide 3-kinases/protein kinase B pathways, which was associated with increased hepatic CD36, fatty acid transport proteins, fatty acid-binding protein-1, and hepatic steatosis. Meanwhile, consumption of a WD-induced hepatic mitochondria dysfunction, oxidative stress, and inflammatory responses. These abnormalities occurring in response to WD feeding were blunted with spironolactone treatment. Moreover, spironolactone promoted white adipose tissue browning and hepatic glucose transporter type 4 expression. These data suggest that enhanced hepatic MR signaling mediates diet-induced hepatic steatosis and dysregulation of adipose tissue browning, and subsequent hepatic mitochondria dysfunction, oxidative stress, inflammation, as well as hepatic insulin resistance.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Animales , Dieta Alta en Grasa , Dieta Occidental/efectos adversos , Hígado Graso/etiología , Hígado Graso/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Mineralocorticoides/metabolismo , Espironolactona/metabolismo , Espironolactona/farmacología
10.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012219

RESUMEN

Systemic insulin resistance is characterized by reduced insulin metabolic signaling and glucose intolerance. Mineralocorticoid receptors (MRs), the principal receptors for the hormone aldosterone, play an important role in regulating renal sodium handling and blood pressure. Recent studies suggest that MRs also exist in tissues outside the kidney, including vascular endothelial cells, smooth muscle cells, fibroblasts, perivascular adipose tissue, and immune cells. Risk factors, including excessive salt intake/salt sensitivity, hypertension, and obesity, can lead to the activation of vascular MRs to promote inflammation, oxidative stress, remodeling, and fibrosis, as well as cardiovascular stiffening and microcirculatory impairment. These pathophysiological changes are associated with a diminished ability of insulin to initiate appropriate intracellular signaling events, resulting in a reduced glucose uptake within the microcirculation and related vascular insulin resistance. Therefore, the pharmacological inhibition of MR activation provides a potential therapeutic option for improving vascular function, glucose uptake, and vascular insulin sensitivity. This review highlights recent experimental and clinical data that support the contribution of abnormal MR activation to the development of vascular insulin resistance and dysfunction.


Asunto(s)
Resistencia a la Insulina , Receptores de Mineralocorticoides , Aldosterona/metabolismo , Presión Sanguínea , Células Endoteliales/metabolismo , Glucosa , Humanos , Insulina , Microcirculación , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Mineralocorticoides , Receptores de Mineralocorticoides/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R276-R286, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33438511

RESUMEN

Aldosterone is a steroid hormone that regulates blood pressure and cardiovascular function by acting on renal and vascular mineralocorticoid receptors (MRs) to promote sodium retention and modulate endothelial function. Indeed, MRs are expressed in endothelial cells, vascular smooth muscle cells, adipocytes, immune cells, skeletal muscle cells, and cardiomyocytes. Excessive aldosterone and associated MR activation impair insulin secretion, insulin metabolic signaling to promote development of diabetes, and the related cardiometabolic syndrome. These adverse effects of aldosterone are mediated, in part, via increased inflammation, oxidative stress, dyslipidemia, and ectopic fat deposition. Therefore, inhibition of MR activation may have a beneficial effect in prevention of impaired insulin metabolic signaling, type 2 diabetes, and cardiometabolic disorders. This review highlights findings from the recent surge in research regarding MR-related cardiometabolic disorders as well as our contemporary understanding of the detrimental effects of excess MR activation on insulin metabolic signaling.


Asunto(s)
Aldosterona/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina , Síndrome Metabólico/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/fisiopatología , Antagonistas de Receptores de Mineralocorticoides/farmacología , Estrés Oxidativo , Receptores de Mineralocorticoides/efectos de los fármacos , Transducción de Señal
12.
Cardiovasc Diabetol ; 20(1): 80, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33882908

RESUMEN

OBJECTIVE: Cardiac diastolic dysfunction (DD) and arterial stiffness are early manifestations of obesity-associated prediabetes, and both serve as risk factors for the development of heart failure with preserved ejection fraction (HFpEF). Since the incidence of DD and arterial stiffness are increasing worldwide due to exponential growth in obesity, an effective treatment is urgently needed to blunt their development and progression. Here we investigated whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses DD and arterial stiffness in an animal model of prediabetes more effectively than valsartan monotherapy. METHODS: Sixteen-week-old male Zucker Obese rats (ZO; n = 64) were assigned randomly to 4 different groups: Group 1: saline control (ZOC); Group 2: sacubitril/valsartan (sac/val; 68 mg•kg-1•day-1; ZOSV); Group 3: valsartan (31 mg•kg-1•day-1; ZOV) and Group 4: hydralazine, an anti-hypertensive drug (30 mg•kg-1•day-1; ZOH). Six Zucker Lean (ZL) rats that received saline only (Group 5) served as lean controls (ZLC). Drugs were administered daily for 10 weeks by oral gavage. RESULTS: Sac/val improved echocardiographic parameters of impaired left ventricular (LV) stiffness in untreated ZO rats, without altering the amount of food consumed or body weight gained. In addition to improving DD, sac/val decreased aortic stiffness and reversed impairment in nitric oxide-induced vascular relaxation in ZO rats. However, sac/val had no impact on LV hypertrophy. Notably, sac/val was more effective than val in ameliorating DD. Although, hydralazine was as effective as sac/val in improving these parameters, it adversely affected LV mass index. Further, cytokine array revealed distinct effects of sac/val, including marked suppression of Notch-1 by both valsartan and sac/val, suggesting that cardiovascular protection afforded by both share some common mechanisms; however, sac/val, but not val, increased IL-4, which is increasingly recognized for its cardiovascular protection, possibly contributing, in part, to more favorable effects of sac/val over val alone in improving obesity-associated DD. CONCLUSIONS: These studies suggest that sac/val is superior to val in reversing obesity-associated DD. It is an effective drug combination to blunt progression of asymptomatic DD and vascular stiffness to HFpEF development in a preclinical model of obesity-associated prediabetes.


Asunto(s)
Aminobutiratos/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Compuestos de Bifenilo/farmacología , Cardiomiopatías Diabéticas/prevención & control , Obesidad/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Valsartán/farmacología , Rigidez Vascular/efectos de los fármacos , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Animales , Citocinas/genética , Citocinas/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Diástole , Modelos Animales de Enfermedad , Combinación de Medicamentos , Masculino , Miocardio/metabolismo , Miocardio/patología , Neprilisina/antagonistas & inhibidores , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/fisiopatología , Ratas Zucker , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
13.
Am J Physiol Renal Physiol ; 318(5): F1220-F1228, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32281419

RESUMEN

Consumption of a Western diet (WD) induces central aortic stiffening that contributes to the transmittance of pulsatile blood flow to end organs, including the kidney. Our recent work supports that endothelial epithelial Na+ channel (EnNaC) expression and activation enhances aortic endothelial cell stiffening through reductions in endothelial nitric oxide (NO) synthase (eNOS) and bioavailable NO that result in inflammatory and oxidant responses and perivascular fibrosis. However, the role that EnNaC activation has on endothelial responses in the renal circulation remains unknown. We hypothesized that cell-specific deletion of the α-subunit of EnNaC would prevent WD-induced central aortic stiffness and protect the kidney from endothelial dysfunction and vascular stiffening. Twenty-eight-week-old female αEnNaC knockout and wild-type mice were fed either mouse chow or WD containing excess fat (46%), sucrose, and fructose (17.5% each). WD feeding increased fat mass, indexes of vascular stiffening in the aorta and renal artery (in vivo pulse wave velocity and ultrasound), and renal endothelial cell stiffening (ex vivo atomic force microscopy). WD further impaired aortic endothelium-dependent relaxation and renal artery compliance (pressure myography) without changes in blood pressure. WD-induced renal arterial stiffening occurred in parallel to attenuated eNOS activation, increased oxidative stress, and aortic and renal perivascular fibrosis. αEnNaC deletion prevented these abnormalities and support a novel mechanism by which WD contributes to renal arterial stiffening that is endothelium and Na+ channel dependent. These results demonstrate that cell-specific EnNaC is important in propagating pulsatility into the renal circulation, generating oxidant stress, reduced bioavailable NO, and renal vessel wall fibrosis and stiffening.


Asunto(s)
Aorta/metabolismo , Dieta Occidental/efectos adversos , Canales Epiteliales de Sodio/metabolismo , Arteria Renal/fisiopatología , Enfermedades Vasculares/metabolismo , Rigidez Vascular , Animales , Aorta/patología , Aorta/fisiopatología , Elasticidad , Canales Epiteliales de Sodio/deficiencia , Canales Epiteliales de Sodio/genética , Femenino , Fibrosis , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Arteria Renal/patología , Transducción de Señal , Enfermedades Vasculares/genética , Enfermedades Vasculares/patología , Enfermedades Vasculares/fisiopatología , Remodelación Vascular
14.
Circ Res ; 122(4): 624-638, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29449364

RESUMEN

Heart failure and related morbidity and mortality are increasing at an alarming rate, in large part, because of increases in aging, obesity, and diabetes mellitus. The clinical outcomes associated with heart failure are considerably worse for patients with diabetes mellitus than for those without diabetes mellitus. In people with diabetes mellitus, the presence of myocardial dysfunction in the absence of overt clinical coronary artery disease, valvular disease, and other conventional cardiovascular risk factors, such as hypertension and dyslipidemia, has led to the descriptive terminology, diabetic cardiomyopathy. The prevalence of diabetic cardiomyopathy is increasing in parallel with the increase in diabetes mellitus. Diabetic cardiomyopathy is initially characterized by myocardial fibrosis, dysfunctional remodeling, and associated diastolic dysfunction, later by systolic dysfunction, and eventually by clinical heart failure. Impaired cardiac insulin metabolic signaling, mitochondrial dysfunction, increases in oxidative stress, reduced nitric oxide bioavailability, elevations in advanced glycation end products and collagen-based cardiomyocyte and extracellular matrix stiffness, impaired mitochondrial and cardiomyocyte calcium handling, inflammation, renin-angiotensin-aldosterone system activation, cardiac autonomic neuropathy, endoplasmic reticulum stress, microvascular dysfunction, and a myriad of cardiac metabolic abnormalities have all been implicated in the development and progression of diabetic cardiomyopathy. Molecular mechanisms linked to the underlying pathophysiological changes include abnormalities in AMP-activated protein kinase, peroxisome proliferator-activated receptors, O-linked N-acetylglucosamine, protein kinase C, microRNA, and exosome pathways. The aim of this review is to provide a contemporary view of these instigators of diabetic cardiomyopathy, as well as mechanistically based strategies for the prevention and treatment of diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas/etiología , Miocardio/metabolismo , Transducción de Señal , Animales , Humanos , Insulina/metabolismo , Miocardio/patología
15.
Diabetologia ; 61(1): 21-28, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28776083

RESUMEN

Diabetic cardiomyopathy is characterised in its early stages by diastolic relaxation abnormalities and later by clinical heart failure in the absence of dyslipidaemia, hypertension and coronary artery disease. Insulin resistance, hyperinsulinaemia and hyperglycaemia are each independent risk factors for the development of diabetic cardiomyopathy. The pathophysiological factors in diabetes that drive the development of cardiomyopathy include systemic metabolic disorders, inappropriate activation of the renin-angiotensin-aldosterone system, subcellular component abnormalities, oxidative stress, inflammation and dysfunctional immune modulation. These abnormalities collectively promote cardiac tissue interstitial fibrosis, cardiac stiffness/diastolic dysfunction and, later, systolic dysfunction, precipitating the syndrome of clinical heart failure. Recent evidence has revealed that dysregulation of coronary endothelial cells and exosomes also contributes to the pathology behind diabetic cardiomyopathy. Herein, we review the relationships among insulin resistance/hyperinsulinaemia, hyperglycaemia and the development of cardiac dysfunction. We summarise the current understanding of the pathophysiological mechanisms in diabetic cardiomyopathy and explore potential preventative and therapeutic strategies.


Asunto(s)
Cardiomiopatías Diabéticas/sangre , Cardiomiopatías Diabéticas/fisiopatología , Hiperglucemia/sangre , Hiperglucemia/fisiopatología , Animales , Cardiopatías/sangre , Cardiopatías/fisiopatología , Humanos , Resistencia a la Insulina/fisiología
16.
Am J Physiol Regul Integr Comp Physiol ; 314(3): R387-R398, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167167

RESUMEN

Obesity is an emerging pandemic driven by consumption of a diet rich in fat and highly refined carbohydrates (a Western diet) and a sedentary lifestyle in both children and adults. There is mounting evidence that arterial stiffness in obesity is an independent and strong predictor of cardiovascular disease (CVD), cognitive functional decline, and chronic kidney disease. Cardiovascular stiffness is a precursor to atherosclerosis, systolic hypertension, cardiac diastolic dysfunction, and impairment of coronary and cerebral flow. Moreover, premenopausal women lose the CVD protection normally afforded to them in the setting of obesity, insulin resistance, and diabetes, and this loss of CVD protection is inextricably linked to an increased propensity for arterial stiffness. Stiffness of endothelial and vascular smooth muscle cells, extracellular matrix remodeling, perivascular adipose tissue inflammation, and immune cell dysfunction contribute to the development of arterial stiffness in obesity. Enhanced endothelial cortical stiffness decreases endothelial generation of nitric oxide, and increased oxidative stress promotes destruction of nitric oxide. Our research over the past 5 years has underscored an important role of increased aldosterone and vascular mineralocorticoid receptor activation in driving development of cardiovascular stiffness, especially in females consuming a Western diet. In this review the cellular mechanisms of obesity-associated arterial stiffness are highlighted.


Asunto(s)
Arterias/fisiopatología , Enfermedades Cardiovasculares/etiología , Obesidad/complicaciones , Rigidez Vascular , Animales , Arterias/metabolismo , Arterias/patología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Humanos , Obesidad/metabolismo , Obesidad/fisiopatología , Pronóstico , Factores de Riesgo , Transducción de Señal , Remodelación Vascular
17.
Cardiovasc Diabetol ; 17(1): 108, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30060748

RESUMEN

BACKGROUND: Arterial stiffness is emerging as an independent risk factor for the development of chronic kidney disease. The sodium glucose co-transporter 2 (SGLT2) inhibitors, which lower serum glucose by inhibiting SGLT2-mediated glucose reabsorption in renal proximal tubules, have shown promise in reducing arterial stiffness and the risk of cardiovascular and kidney disease in individuals with type 2 diabetes mellitus. Since hyperglycemia contributes to arterial stiffness, we hypothesized that the SGLT2 inhibitor empagliflozin (EMPA) would improve endothelial function, reduce aortic stiffness, and attenuate kidney disease by lowering hyperglycemia in type 2 diabetic female mice (db/db). MATERIALS/METHODS: Ten-week-old female wild-type control (C57BLKS/J) and db/db (BKS.Cg-Dock7m+/+Leprdb/J) mice were divided into three groups: lean untreated controls (CkC, n = 17), untreated db/db (DbC, n = 19) and EMPA-treated db/db mice (DbE, n = 19). EMPA was mixed with normal mouse chow at a concentration to deliver 10 mg kg-1 day-1, and fed for 5 weeks, initiated at 11 weeks of age. RESULTS: Compared to CkC, DbC showed increased glucose levels, blood pressure, aortic and endothelial cell stiffness, and impaired endothelium-dependent vasorelaxation. Furthermore, DbC exhibited impaired activation of endothelial nitric oxide synthase, increased renal resistivity and pulsatility indexes, enhanced renal expression of advanced glycation end products, and periarterial and tubulointerstitial fibrosis. EMPA promoted glycosuria and blunted these vascular and renal impairments, without affecting increases in blood pressure. In addition, expression of "reversion inducing cysteine rich protein with Kazal motifs" (RECK), an anti-fibrotic mediator, was significantly suppressed in DbC kidneys and partially restored by EMPA. Confirming the in vivo data, EMPA reversed high glucose-induced RECK suppression in human proximal tubule cells. CONCLUSIONS: Empagliflozin ameliorates kidney injury in type 2 diabetic female mice by promoting glycosuria, and possibly by reducing systemic and renal artery stiffness, and reversing RECK suppression.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Angiopatías Diabéticas/prevención & control , Nefropatías Diabéticas/prevención & control , Glucósidos/farmacología , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Circulación Renal/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Rigidez Vascular/efectos de los fármacos , Albuminuria/etiología , Albuminuria/prevención & control , Animales , Glucemia/metabolismo , Línea Celular , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/fisiopatología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Proteínas Ligadas a GPI/metabolismo , Glucosuria/etiología , Glucosuria/prevención & control , Humanos , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Ratones Mutantes , Flujo Pulsátil/efectos de los fármacos , Resistencia Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos
18.
Circ Res ; 118(6): 935-943, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26879229

RESUMEN

RATIONALE: Enhanced activation of the mineralocorticoid receptors (MRs) in cardiovascular tissues increases oxidative stress, maladaptive immune responses, and inflammation with associated functional vascular abnormalities. We previously demonstrated that consumption of a Western diet (WD) for 16 weeks results in aortic stiffening, and that these abnormalities were prevented by systemic MR blockade in female mice. However, the cell-specific role of endothelial cell MR (ECMR) in these maladaptive vascular effects has not been explored. OBJECTIVE: We hypothesized that specific deletion of the ECMR would prevent WD-induced increases in endothelial sodium channel activation, reductions in bioavailable nitric oxide, increased vascular remodeling, and associated increases in vascular stiffness in females. METHODS AND RESULTS: Four-week-old female ECMR knockout and wild-type mice were fed either mouse chow or WD for 16 weeks. WD feeding resulted in aortic stiffness and endothelial dysfunction as determined in vivo by pulse wave velocity and ex vivo by atomic force microscopy, and wire and pressure myography. The WD-induced aortic stiffness was associated with enhanced endothelial sodium channel activation, attenuated endothelial nitric oxide synthase activation, increased oxidative stress, a proinflammatory immune response and fibrosis. Conversely, cell-specific ECMR deficiency prevented WD-induced aortic fibrosis and stiffness in conjunction with reductions in endothelial sodium channel activation, oxidative stress and macrophage proinflammatory polarization, restoration of endothelial nitric oxide synthase activation. CONCLUSIONS: Increased ECMR signaling associated with consumption of a WD plays a key role in endothelial sodium channel activation, reduced nitric oxide production, oxidative stress, and inflammation that lead to aortic remodeling and stiffness in female mice.


Asunto(s)
Aorta/fisiología , Dieta Occidental/efectos adversos , Endotelio Vascular/fisiología , Receptores de Mineralocorticoides/fisiología , Rigidez Vascular/fisiología , Animales , Aorta/patología , Femenino , Ratones , Ratones Noqueados
19.
Curr Hypertens Rep ; 20(9): 76, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980951

RESUMEN

PURPOSE OF REVIEW: Increased arterial stiffness, an abnormal structural and functional change in the vascular wall, is a precursor for hypertension, coronary heart disease, stroke, and associated cardiovascular disease (CVD). The aim of this paper is to review the etiology of arterial stiffening and potential therapeutic approaches to modulate arterial fibrosis and stiffness. RECENT FINDINGS: The Framingham Heart Study demonstrated that arterial stiffness is an independent predictor of CVD and related morbidity and mortality. Dysfunction of endothelial cells, vascular smooth muscle cells, extracellular matrix, and other functional elements of the vessel wall contribute to underlying pathophysiology of increased arterial stiffness. An activated renin-angiotensin-aldosterone system, oxidative stress, abnormal peri-vascular adipose tissue, inflammation, and increased sympathetic nervous system activity are associated with the development and progression of arterial fibrosis, stiffening, and associated CVD. In this review, we will discuss the structural and function changes and mechanisms of the vessel wall in arterial stiffness and provide potential therapeutic strategies.


Asunto(s)
Antihipertensivos/farmacología , Rigidez Vascular/efectos de los fármacos , Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Animales , Arterias/patología , Células Endoteliales/fisiología , Matriz Extracelular/fisiología , Fibrosis/tratamiento farmacológico , Humanos , Miocitos del Músculo Liso/fisiología , Estrés Oxidativo/fisiología , Sistema Renina-Angiotensina/fisiología , Sistema Nervioso Simpático/fisiopatología , Rigidez Vascular/fisiología
20.
Biochim Biophys Acta Mol Basis Dis ; 1863(8): 2012-2018, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27989961

RESUMEN

The prevalence of cardiac diastolic dysfunction and heart failure with preserved ejection, a major cause of morbidity and mortality in the western world, is increasing due, in part, to increases in obesity and type 2 diabetes. Characteristics of cardiac diastolic dysfunction include increased myocardial stiffness and impaired left ventricular (LV) relaxation that is characterized by prolonged isovolumic LV relaxation and slow LV filling. Obesity, insulin resistance and type 2 diabetes, especially in females promote activation of mineralocorticoid receptor (MR) signaling with resultant increases in oxidative stress, maladaptive immune responses, inflammation, and impairment of coronary blood flow and cardiac interstitial fibrosis. This review highlights findings from the recent surge in cardiac diastolic dysfunction research. To this end it highlights our contemporary understanding of molecular mechanisms of MR regulation by genetic, epigenetic and posttranslational modifications and resultant cardiac diastolic dysfunction associated with insulin resistance, obesity and type 2 diabetes. This review also explores potential preventative and therapeutic strategies directed in the prevention of cardiac diastolic dysfunction and heart failure with preserved ejection. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure edited by Dr. Jun Ren & Yingmei Zhang.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Epigénesis Genética , Proteínas Musculares , Procesamiento Proteico-Postraduccional , Receptores de Mineralocorticoides , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Humanos , Proteínas Musculares/metabolismo , Estrés Oxidativo/genética , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA