Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Hepatol ; 76(1): 123-134, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34464659

RESUMEN

BACKGROUND & AIMS: Mounting evidence implicates the Hippo downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) in hepatocellular carcinoma (HCC). We investigated the functional contribution of YAP and/or TAZ to c-MYC-induced liver tumor development. METHODS: The requirement for YAP and/or TAZ in c-Myc-driven hepatocarcinogenesis was analyzed using conditional Yap, Taz, and Yap;Taz knockout (KO) mice. An hepatocyte-specific inducible TTR-CreERT2 KO system was applied to evaluate the role of YAP and TAZ during tumor progression. Expression patterns of YAP, TAZ, c-MYC, and BCL2L12 were analyzed in human HCC samples. RESULTS: We found that the Hippo cascade is inactivated in c-Myc-induced mouse HCC. Intriguingly, TAZ mRNA levels and activation status correlated with c-MYC activity in human and mouse HCC, but YAP mRNA levels did not. We demonstrated that TAZ is a direct transcriptional target of c-MYC. In c-Myc induced murine HCCs, ablation of Taz, but not Yap, completely prevented tumor development. Mechanistically, TAZ was required to avoid c-Myc-induced hepatocyte apoptosis during tumor initiation. The anti-apoptotic BCL2L12 gene was identified as a novel target regulated specifically by YAP/TAZ, whose silencing strongly suppressed c-Myc-driven murine hepatocarcinogenesis. In c-Myc murine HCC lesions, conditional knockout of Taz, but not Yap, led to tumor regression, supporting the requirement of TAZ for c-Myc-driven HCC progression. CONCLUSIONS: TAZ is a pivotal player at the crossroad between the c-MYC and Hippo pathways in HCC. Targeting TAZ might be beneficial for the treatment of patients with HCC and c-MYC activation. LAY SUMMARY: The identification of novel treatment targets and approaches for patients with hepatocellular carcinoma is crucial to improve survival outcomes. We identified TAZ as a transcriptional target of c-MYC which plays a critical role in c-MYC-dependent hepatocarcinogenesis. TAZ could potentially be targeted for the treatment of patients with c-MYC-driven hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/efectos adversos , Proteínas Señalizadoras YAP/efectos adversos , Animales , Carcinoma Hepatocelular/fisiopatología , Proteínas de Unión al ADN/efectos adversos , Proteínas de Unión al ADN/análisis , Modelos Animales de Enfermedad , Redes Reguladoras de Genes/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatología , Ratones , Ratones Noqueados , Estadísticas no Paramétricas , Factores de Transcripción/efectos adversos , Factores de Transcripción/análisis , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/genética , Proteínas Señalizadoras YAP/genética
2.
Gut ; 69(1): 177-186, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30954949

RESUMEN

OBJECTIVE: Increased de novo fatty acid (FA) synthesis and cholesterol biosynthesis have been independently described in many tumour types, including hepatocellular carcinoma (HCC). DESIGN: We investigated the functional contribution of fatty acid synthase (Fasn)-mediated de novo FA synthesis in a murine HCC model induced by loss of Pten and overexpression of c-Met (sgPten/c-Met) using liver-specific Fasn knockout mice. Expression arrays and lipidomic analysis were performed to characterise the global gene expression and lipid profiles, respectively, of sgPten/c-Met HCC from wild-type and Fasn knockout mice. Human HCC cell lines were used for in vitro studies. RESULTS: Ablation of Fasn significantly delayed sgPten/c-Met-driven hepatocarcinogenesis in mice. However, eventually, HCC emerged in Fasn knockout mice. Comparative genomic and lipidomic analyses revealed the upregulation of genes involved in cholesterol biosynthesis, as well as decreased triglyceride levels and increased cholesterol esters, in HCC from these mice. Mechanistically, loss of Fasn promoted nuclear localisation and activation of sterol regulatory element binding protein 2 (Srebp2), which triggered cholesterogenesis. Blocking cholesterol synthesis via the dominant negative form of Srebp2 (dnSrebp2) completely prevented sgPten/c-Met-driven hepatocarcinogenesis in Fasn knockout mice. Similarly, silencing of FASN resulted in increased SREBP2 activation and hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase (HMGCR) expression in human HCC cell lines. Concomitant inhibition of FASN-mediated FA synthesis and HMGCR-driven cholesterol production was highly detrimental for HCC cell growth in culture. CONCLUSION: Our study uncovers a novel functional crosstalk between aberrant lipogenesis and cholesterol biosynthesis pathways in hepatocarcinogenesis, whose concomitant inhibition might represent a therapeutic option for HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Colesterol/biosíntesis , Acido Graso Sintasa Tipo I/metabolismo , Ácidos Grasos/biosíntesis , Neoplasias Hepáticas/metabolismo , Animales , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Acido Graso Sintasa Tipo I/genética , Femenino , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Genómica , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Lipidómica , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Transcriptoma
3.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187130

RESUMEN

Hepatocellular carcinoma (HCC) is a deadly form of liver malignancy with limited treatment options. Amplification and/or overexpression of c-MYC is one of the most frequent genetic events in human HCC. The mammalian target of Rapamycin Complex 1 (mTORC1) is a major functional axis regulating various aspects of cellular growth and metabolism. Recently, we demonstrated that mTORC1 is necessary for c-Myc driven hepatocarcinogenesis as well as for HCC cell growth in vitro. Among the pivotal downstream effectors of mTORC1, upregulation of Fatty Acid Synthase (FASN) and its mediated de novo lipogenesis is a hallmark of human HCC. Here, we investigated the importance of FASN on c-Myc-dependent hepatocarcinogenesis using in vitro and in vivo approaches. In mouse and human HCC cells, we found that FASN suppression by either gene silencing or soluble inhibitors more effectively suppressed proliferation and induced apoptosis in the presence of high c-MYC expression. In c-Myc/Myeloid cell leukemia 1 (MCL1) mouse liver tumor lesions, FASN expression was markedly upregulated. Most importantly, genetic ablation of Fasn profoundly delayed (without abolishing) c-Myc/MCL1 induced HCC formation. Liver tumors developing in c-Myc/MCL1 mice depleted of Fasn showed a reduction in proliferation and an increase in apoptosis when compared with corresponding lesions from c-Myc/MCL1 mice with an intact Fasn gene. In human HCC samples, a significant correlation between the levels of c-MYC transcriptional activity and the expression of FASN mRNA was detected. Altogether, our study indicates that FASN is an important effector downstream of mTORC1 in c-MYC induced HCC. Targeting FASN may be helpful for the treatment of human HCC, at least in the tumor subset displaying c-MYC amplification or activation.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Acido Graso Sintasa Tipo I/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Apoptosis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Genes myc/genética , Humanos , Lipogénesis/genética , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , ARN Mensajero/genética , Transcripción Genética/genética , Regulación hacia Arriba/genética
5.
Tumour Biol ; 36(3): 1589-94, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25377160

RESUMEN

Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified human oncoprotein that can stabilize some proteins by inhibiting degradation mediated by protein phosphatase 2A (PP2A), and its level in cancer is associated with resistance to chemotherapy. However, whether CIP2A could increase chemoresistance of prostate cancer (PCa) cells to chemotherapeutic agent cabazitaxel remains unclear. To determine whether CIP2A serves as a potential therapeutic target of human PCa, we utilized small interference RNA (siRNA) to knock down CIP2A expression in human PCa cells and analyzed their phenotypic changes. The data demonstrated that CIP2A was significantly elevated in mCRPC cell lines C4-2 and ARCaP(M) at both the mRNA and protein levels. CIP2A silencing led to decreased proliferation and enhanced chemosensitivity and apoptosis to cabazitaxel in human PCa cells, as well as reduced Akt phosphorylation. Our data suggesting critical roles of CIP2A in PCa cells chemoresistance to cabazitaxel and raising the possibility of CIP2A inhibition as a promising approach for chemosensitization of metastatic castration-resistant prostate cancer (mCRPC).


Asunto(s)
Autoantígenos/genética , Proteínas de la Membrana/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Taxoides/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/genética
6.
Tumour Biol ; 35(12): 11781-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25190016

RESUMEN

To explore the antitumor effect of caffeic acid 3,4-dihydroxy-phenethyl ester (CADPE) on the breast cancer cell lines and illuminate the related mechanism. After treatment with different concentrations of CADPE for 24, 48, and 72 h, cell proliferation ability of the breast cancer cell lines MDA-MB-231 and MDA-MB-435 was analyzed by the MTT. Changes of the cell cycles were evaluated by PI staining. Cell apoptosis was examined by flow cytometry after Annexin V/7AAD double staining. Nuclear morphologic changes were observed under the inverted fluorescence microscope after staining with Hoechst 33342. Mitochondrial membrane potential and reactive oxygen species (ROS) level were estimated by JC-1 and DCFH-DA staining. In addition, the expression level of mitochondrial signaling pathway proteins Bcl-2, Bax, and caspase-3 were evaluated by Western blot. CADPE has the distinct cytotoxic effect to the breast cancer cells, and the effect is dose dependent. It did not change the cell cycles but induced the cell apoptosis of the breast cancer cells. At the same time, after CADPE treatment, the expression levels of caspase-3 and Bax in the breast cancer cells were upregulated and Bcl-2 expression was declined. The ROS level in the breast cancer cells was enhanced, and mitochondrial membrane potential of the cells was downregulated. CADPE has the antitumor functions. It can induce the cell apoptosis through downregulating Bcl-2 expression, enhancing Bax and caspase-3 expression levels, upregulating ROS level and reducing the mitochondrial membrane potential of the breast cancer cells to trigger the mitochondrial signal pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Ácidos Cafeicos/farmacología , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
7.
Cell Mol Gastroenterol Hepatol ; 11(4): 1095-1117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33232824

RESUMEN

BACKGROUND & AIMS: Yes-associated protein (YAP) and its paralog transcriptional co-activator with post synaptic density protein, drosophila disc large tumor suppressor and zonula occludens-1-binding motif (TAZ) are 2 co-activators downstream of Hippo tumor-suppressor cascade. Both have been implicated in the development of hepatocellular carcinoma (HCC). However, whether YAP and TAZ have distinct or overlapping functions during hepatocarcinogenesis remains unknown. METHODS: Expression patterns of YAP and TAZ were analyzed in human HCC samples. The requirement of Yap and/or Taz in protein kinase B (Akt)/ neuroblastoma RAS viral oncogene homolog (NRas) -driven liver tumorigenesis was analyzed using conditional Yap, Taz, and Yap;Taz knockout mice. Transcriptional programs regulated by YAP and/or TAZ were identified via RNA sequencing. RESULTS: We found that in human HCC samples, an almost ubiquitous activation of YAP or TAZ occurs, underlying their role in this tumor type. Intriguingly, 70% of HCC samples showed only nuclear YAP or TAZ immunoreactivity. In the Akt/NRas liver tumor model, where nuclear Yap and Taz can be detected readily, deletion of Yap or Taz alone only mildly delayed liver tumor development, whereas their concomitant ablation strongly inhibited tumor cell proliferation and significantly suppressed Akt/NRas-driven hepatocarcinogenesis. In HCC cell lines, silencing of either YAP or TAZ led to decreased expression of both overlapping and distinct sets of genes, with the most prominent gene signatures related to cell-cycle progression and DNA replication. CONCLUSIONS: YAP and TAZ have overlapping and distinct roles in hepatocarcinogenesis. HCCs may display unique activation of YAP or TAZ, thus relying on either YAP or TAZ for their growth.


Asunto(s)
Aciltransferasas/metabolismo , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular/metabolismo , Hepatitis B/complicaciones , Neoplasias Hepáticas/patología , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Aciltransferasas/genética , Anciano , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Proteínas de Ciclo Celular/genética , Femenino , Hepatitis B/virología , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Masculino , Ratones , Ratones Noqueados , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/genética
8.
PLoS One ; 12(9): e0184068, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28877210

RESUMEN

Previous data indicate that Tankyrase inhibitors exert anti-growth functions in many cancer cell lines due to their ability to inactivate the YAP protooncogene. In the present manuscript, we investigated the effect of Tankyrase inhibitors on the growth of hepatocellular carcinoma (HCC) cell lines and the molecular mechanisms involved. For this purpose, we performed cell proliferation assay by colony-forming ability in seven human HCC cells subjected to XAV-939 and G007-LK Tankyrase inhibitors. Noticeably, the two Tankyrase inhibitors suppressed the HCC cell growth in a dose-dependent manner. Furthermore, we found that Tankyrase inhibitors synergized with MEK and AKT inhibitors to suppress HCC cell proliferation. At the molecular level, Tankyrase inhibitors significantly decreased YAP protein levels, reduced the expression of YAP target genes, and inhibited YAP/TEAD luciferase reporter activity. In addition, Tankyrase inhibitors administration was accompanied by upregulation of Angiomotin-like 1 (AMOTL1) and Angiomotin-like 2 (AMOTL2) proteins, two major negative regulators of YAP. Altogether, the present data indicate that XAV-939 and G007-LK Tankyrase inhibitors could suppress proliferation of hepatocellular carcinoma cells and downregulate YAP/TAZ by stabilizing AMOTL1 and AMOTL2 proteins, thus representing new potential anticancer drugs against hepatocellular carcinoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Sulfonas/uso terapéutico , Tanquirasas/antagonistas & inhibidores , Triazoles/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Angiomotinas , Apoptosis/efectos de los fármacos , Western Blotting , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción , Proteínas Señalizadoras YAP
9.
Cancer Res ; 77(16): 4355-4364, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28630053

RESUMEN

Different pyruvate kinase isoforms are expressed in a tissue-specific manner, with pyruvate kinase M2 (PKM2) suggested to be the predominant isoform in proliferating cells and cancer cells. Because of differential regulation of enzymatic activities, PKM2, but not PKM1, has been thought to favor cell proliferation. However, the role of PKM2 in tumorigenesis has been recently challenged. Here we report that increased glucose catabolism through glycolysis and increased pyruvate kinase activity in c-MYC-driven liver tumors are associated with increased expression of both PKM1 and PKM2 isoforms and decreased expression of the liver-specific isoform of pyruvate kinase, PKL. Depletion of PKM2 at the time of c-MYC overexpression in murine livers did not affect c-MYC-induced tumorigenesis and resulted in liver tumor formation with decreased pyruvate kinase activity and decreased catabolism of glucose into alanine and the Krebs cycle. An increased PKM1/PKM2 ratio by ectopic PKM1 expression further decreased glucose flux into serine biosynthesis and increased flux into lactate and the Krebs cycle, resulting in reduced total levels of serine. However, these changes also did not affect c-MYC-induced liver tumor development. These results suggest that increased expression of PKM2 is not required to support c-MYC-induced tumorigenesis in the liver and that various PKM1/PKM2 ratios and pyruvate kinase activities can sustain glucose catabolism required for this process. Cancer Res; 77(16); 4355-64. ©2017 AACR.


Asunto(s)
Glucosa/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piruvato Quinasa/metabolismo , Animales , Genes myc , Isoenzimas , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-myc/genética , Piruvato Quinasa/genética
10.
J Cancer Res Ther ; 12(1): 340-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27072261

RESUMEN

UNLABELLED: Objection: The aim of this study is to investigate the association between promoter methylation of RASSF1A and p16 and the clinicopathological features in lung cancers. MATERIALS AND METHODS: PubMed, EBSCO, Ovid, Wiley, Web of Science, Wanfang, and VIP databases were searched using combinations of keywords related to RASSF1A, p16, methylation, and lung cancers. After screening for relevant studies, following a strict inclusion and exclusion criteria; the selected studies were incorporated into the present meta.analysis conducted using Comprehensive Meta Analysis 2.0. (CMA 2.0). RESULTS: We initially retrieved 402 studies, out which 13 studies met the inclusion and exclusion criteria for this meta.analysis, and contained a total of 1,259. patients with lung cancers. The results of this meta.analysis showed that the differences in promoter methylation ratio between the lung cancer patients in tumor, node, metastasis. (TNM) I.II and III.IV were not statistically significant. Based on histological types, patients with adenocarcinoma. (AC) and squamous cell carcinoma. (SCC) showed no significant differences in the promoter methylation ratios of RASSF1A, while the promoter methylation ratio of p16 was significantly higher in SCC patients compared to AC patients. Based on smoking status, the promoter methylation ratios of both RASSF1A and p16 was significantly higher in lung cancer patients with smoking history compared to nonsmokers. CONCLUSION: The present meta.analysis provides convincing evidence that the promoter methylation ratio of RASSF1A and p16 is associated with clinicopathological features in lung cancers, and could be used as effective biomarkers in early diagnosis in lung cancers.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Proteínas Supresoras de Tumor/genética , Adenocarcinoma/patología , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Metilación de ADN/genética , Detección Precoz del Cáncer , Femenino , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Pulmonares/patología , Masculino , Regiones Promotoras Genéticas
11.
Cancer Biother Radiopharm ; 30(1): 1-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25629696

RESUMEN

Breast cancer is a major cause of cancer-related death among women. Tumor protein D52-like 2 (TPD52L2) is one member of the TPD52 family, which has been shown to function in mediating cell proliferation, apoptosis, and vehicle trafficking. TPD52 was originally identified in human breast carcinoma. In this study, the authors found that TPD52L2 is extensively expressed in multiple human breast cancer cell lines. To elucidate the functional role of TPD52L2 in breast cancer, the authors employed lentivirus-mediated short hairpin RNA (shRNA) to knock down TPD52L2 in one breast cancer cell line, ZR-75-30, which showed high TPD52L2 expression. The shRNA-mediated TPD52L2 knockdown inhibited the proliferation and colony formation in ZR-75-30 cells, as determined by MTT and colony formation assays. Knockdown of TPD52L2 led to an accumulation of cells in the G0/G1 phase of the cell cycle. Furthermore, knockdown of TPD52L2 promoted GSK3ß phosphorylation in ZR-75-30 cells. This investigation indicates that TPD52L2 plays an essential role in the growth of breast cancer cells, which may contribute to provide gene therapy for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Neoplasias/biosíntesis , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética
12.
Anticancer Res ; 34(6): 2919-25, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24922655

RESUMEN

Protein phosphatase magnesium-dependent 1 delta (PPM1D) is involved in several types of cancer. The current study examined the role of PPM1D expression in prostate cancer (PCa) tissues and in PCa cell lines. Expression of PPM1D was evaluated using immunohistochemistry in 234 PCa tissues after radical prostatectomy and 80 benign prostatic hyperplasia (BPH) tissues. The associations of PPM1D expression with clinicopathological parameters and survival were analyzed. In vitro, tumor cells were transfected with small interfering RNA targeting PPM1D (siPPM1D) or si-Scramble, and the cell proliferation, migration and invasion were determined. We found that PPM1D expression was significantly higher in PCa tissues than that in BPH tissues. PPM1D expression was positively correlated with Gleason score (p=0.022), T stage (p=0.015) and lymph node status (p=0.016). Kaplan-Meier curve analysis showed that patients with positive PPM1D expression had shorter biochemical recurrence-free survival and overall survival. Furthermore, multivariate analyses showed that PPM1D expression was an independent predictor of both biochemical recurrence-free (hazard ratio=3.437, 95% confidence interval=1.154-6.209, p=0.016) and overall survival (hazard ratio=5.026, 95% confidence interval=2.545-8.109, p=0.007). Knockdown of PPM1D inhibited the proliferation, migration and invasion capabilities of PC-3 and LNCaP cells. PPM1D expression may predict for both overall and biochemical recurrence-free survival in patients after radical prostatectomy for PCa. Elevated PPM1D expression plays a key role in progression of PCa.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Prostatectomía , Hiperplasia Prostática/metabolismo , Neoplasias de la Próstata/metabolismo , Anciano , Anciano de 80 o más Años , Apoptosis , Western Blotting , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Estudios de Seguimiento , Humanos , Técnicas para Inmunoenzimas , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Estadificación de Neoplasias , Pronóstico , Hiperplasia Prostática/mortalidad , Hiperplasia Prostática/patología , Hiperplasia Prostática/cirugía , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Proteína Fosfatasa 2C , Tasa de Supervivencia
13.
Oncol Rep ; 30(1): 171-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23624618

RESUMEN

Interferon-induced transmembrane protein 3 (IFITM3) is an important anti-virus protein and has been recently shown to play a role in human cancer development. Thus, the present study aimed to assess the expression of the IFITM3 protein in breast cancer tissues and to investigate the in vitro effects of IFITM3 knockdown in the regulation of breast cancer cell growth and cell cycle distributions. A total of 64 patients of breast cancer and the matched normal tissue specimens were obtained for immunohistochemical analysis of IFITM3 expression. Lentivirus-carrying IFITM3 shRNA was used to knock down IFITM3 expression in breast cancer cell lines. Phenotypic changes of cell viability, growth, colony formation and cell cycle distribution was also assayed using flow cytometry, MTT, BrdU incorporation and colony formation assays. The IFITM3 protein was highly expressed in invasive breast cancer compared to normal tissues and was significantly associated with estrogen receptor and progesterone receptor status. The lentivirus-carried IFITM3 shRNA significantly reduced the expression of IFITM3 mRNA and protein in breast cancer cells, inhibiting tumor cell viability, growth and colony formation, arrested tumor cells at the G0/G1 phase of the cell cycle and reduced the number of cells in the S phase of the cell cycle. Expression of IFITM3 protein could be a potential therapeutic target in future treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Ciclo Celular/genética , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Células MCF-7 , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Interferente Pequeño , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA