Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phys Chem Chem Phys ; 26(29): 20087-20102, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007924

RESUMEN

The original etiology of Alzheimer's disease (AD) is the deposition of amyloid-beta (Aß) proteins, which starts from the aggregation of the Aß oligomers. The optimal therapeutic strategy targeting Aß oligomer aggregation is the development of AD vaccines. Despite the fact that positive progress has been made for experimental attempts at AD vaccines, the physicochemical and even structural properties of these AD vaccines remain unclear. In this study, through immunoinformatic and molecular dynamics (MD) simulations, we first designed and simulated an alternative of vaccine TAPAS and found that the structure of the alternative can reproduce the 3D conformation of TAPAS determined experimentally. Meanwhile, immunoinformatic methods were used to analyze the physicochemical properties of TAPAS, including immunogenicity, antigenicity, thermal stability, and solubility, which confirm well the efficacy and safety of the vaccine, and validate the scheme reliability of immunoinformatic and MD simulations in designing and simulating the TAPAS vaccine. Using the same scheme, we predicted the 3D conformation of the optimized ACI-24 peptide vaccine, an Aß peptide with the first 15 residues of Aß42 (Aß1-15). The vaccine was verified once to be effective against both full-length Aß1-42 and truncated Aß4-42 aggregates, but an experimental 3D structure was absent. We have also explored the immune mechanism of the vaccine at the molecular level and found that the optimized ACI-24 and its analogues can block the growth of either full-length Aß1-42 or truncated Aß4-42 pentamer by contacting the hydrophobic residues within the N-terminus and ß1 region on the contact surface of either pentamer. Additionally, residues (D1, D7, S8, H13, and Q15) were identified as the key residues of the vaccine to contact either of the two Aß oligomers. This work provides a feasible implementation scheme of immunoinformatic and MD simulations for the development of AD small peptide vaccines, validating the power of the scheme as a parallel tool to the experimental approaches and injecting molecular-level information into the understanding and design of anti-AD vaccines.


Asunto(s)
Vacunas contra el Alzheimer , Péptidos beta-Amiloides , Fragmentos de Péptidos , Vacunas de Subunidades Proteicas , Humanos , Enfermedad de Alzheimer/prevención & control , Vacunas contra el Alzheimer/química , Vacunas contra el Alzheimer/inmunología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/inmunología , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Conformación Proteica , Vacunas de Subunidades Proteicas/química , Vacunas de Subunidades Proteicas/inmunología
2.
Int J Mol Sci ; 15(4): 6412-22, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24739812

RESUMEN

Copper films were grown on (3-Mercaptopropyl)trimethoxysilane (MPTMS), (3-Aminopropyl)triethoxysilane (APTES) and 6-(3-(triethoxysilyl)propylamino)-1,3,5- triazine-2,4-dithiol monosodium (TES) self-assembled monolayers (SAMs) modified acrylonitrile-butadiene-styrene (ABS) substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111) preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance.


Asunto(s)
Resinas Acrílicas/química , Butadienos/química , Cobre/química , Poliestirenos/química , Microscopía Electrónica de Rastreo , Compuestos de Organosilicio , Propilaminas , Silanos/química , Propiedades de Superficie , Difracción de Rayos X
3.
Int J Biol Macromol ; 262(Pt 2): 130138, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354930

RESUMEN

Functional materials with under-liquid dual superlyophobicity have generated a great deal of concern from researchers due to their switchable separation ability oil-water mixtures and emulsions. Conceptually, under-liquid dual superlyophobicity is a Cassie state achievable under-liquid through the synergy of an under-liquid double lyophobic surface and the construction of a highly rough surface. However, obtaining an under-liquid dual superlyophobic surface remains difficult due to its thermodynamic contradiction and complex surface composition. Herein, we successfully prepared a functional coating by modifying the mixture of cellulose nanocrystals (CNCs) and nano-TiO2 with perfluorooctanoic acid (PFOA) via a simple method, then obtained a polyester fiber membrane with under-liquid dual superlyophobicity by roll coating method. The surface wettability of the polyester (PET) membrane was altered, transforming it from the original under-water oleophobic/under-oil superhydrophilic state to the under-water superoleophobic/under-oil superhydrophobic state after coated. The resulting membrane was applied to separate oil and water on-demand. The coated PET membrane exhibited high separation efficiency (>99 %) and high separation flux, effectively separating immiscible oil-water systems as well as oil-in-water and water-in-oil emulsions. The coated PET membrane also demonstrated the ability to perform alternate separation of oil-water mixtures through wetting, washing, and rewetting cycles, with repeated processes up to 10 times without significant reduction in separation efficiency. Furthermore, compared with the previous works, our approach offers a simpler and more convenient method for constructing under-liquid dual superlyophobic surface, making it more suitable for continuous corporate production. This study may provide inspiration for the production and application in large-scale of under-liquid dual superlyophobic membranes.


Asunto(s)
Fabaceae , Nanopartículas , Celulosa , Poliésteres , Termodinámica
4.
J Mol Model ; 30(7): 233, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937296

RESUMEN

CONTEXT: Existing researches confirmed that ß amyloid (Aß) has a high affinity for the α7 nicotinic acetylcholine receptor (α7nAChR), associating closely to Alzheimer's disease. The majority of related studies focused on the experimental reports on the neuroprotective role of Aß fragment (Aßx), however, with a lack of investigation into the most suitable binding region and mechanism of action between Aß fragment and α7nAChR. In the study, we employed four Aß1-42 fragments Aßx, Aß1-16, Aß10-16, Aß12-28, and Aß30-42, of which the first three were confirmed to play neuroprotective roles upon directly binding, to interact with α7nAChR. METHODS: The protein-ligand docking server of CABS-DOCK was employed to obtain the α7nAChR-Aßx complexes. Only the top α7nAChR-Aßx complexes were used to perform all-atom GROMACS dynamics simulation in combination with Charmm36 force field, by which α7nAChR-Aßx interactions' dynamic behavior and specific locations of these different Aßx fragments were identified. MM-PBSA calculations were also done to estimate the binding free energies and the different contributions from the residues in the Aßx. Two distinct results for the first three and fourth Aßx fragments in binding site, strength, key residue, and orientation, account for why the fourth fails to play a neuroprotective role at the molecular level.


Asunto(s)
Péptidos beta-Amiloides , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fragmentos de Péptidos , Unión Proteica , Receptor Nicotínico de Acetilcolina alfa 7 , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Humanos , Sitios de Unión , Ligandos
5.
Food Sci Technol Int ; : 10820132231225778, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238928

RESUMEN

The work aims to optimize the process of cold plasma for fresh-cut kiwifruit. The effects of discharge times, treatment voltages, and slice thickness as well as the interaction between them were investigated. Factor analysis was used to screen out the characteristic indices of fresh-cut kiwifruit. Design-Expert software was used to design three-factor response surface tests and find the optimal parameters. The results revealed that the quality indices of fresh-cut kiwifruit were the color difference, brittleness, and solid-acid ratio, the established binomial regression equations were significant (P < 0.05). At the optimal level: 26 kV treatment voltage, 120 s discharge times, and 10 mm slice thickness, the optimized test values for the color difference, brittleness, solid-acid ratio and decreased logarithm value of total plate count were 2.25, 128.96 g·s, 18.03 and 2.30 lg(CFU·g-1), respectively. Cold plasma could significantly improve the inactivation of bacteria in fresh-cut kiwifruit.

6.
Chemosphere ; 357: 142070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641297

RESUMEN

Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.


Asunto(s)
Compuestos de Amonio , Calcio , Teoría Funcional de la Densidad , Nitratos , Nitrógeno , Fósforo , Adsorción , Calcio/química , Nitrógeno/química , Fósforo/química , Nitratos/química , Compuestos de Amonio/química , Compuestos Férricos/química , Modelos Químicos , Concentración de Iones de Hidrógeno
7.
Huan Jing Ke Xue ; 45(3): 1349-1360, 2024 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-38471851

RESUMEN

Pollution variation, source characteristics, and meteorological effects of water-soluble inorganic ions (WSIIs) in PM2.5 were analyzed in Xinxiang city, Henan Province. PM2.5 samples and their chemical components were monitored online by using URG-9000 in four seasons:winter (January, 2022), spring (April, 2022), summer (July, 2022), and fall (October, 2022). The results showed that the TWSIIs had the same seasonal fluctuations as PM2.5. The average seasonal concentrations of WSIIs ranged from 19.62-72.15 µg·m-3, accounting for more than 60% of PM2.5, demonstrating that WSIIs were the major components of PM2.5. The annual concentration value of NO3-/SO42- was 2.11, which showed an increasing trend, suggesting predominantly mobile sources for secondary inorganic aerosols (SNA). Further, the molar concentration value [NH4+]/[NO3-] was 1.95, demonstrating that agriculture emissions were the dominant contributors to atmospheric nitrogen. Furthermore, the backward trajectory analysis showed that the concentrations of Ca2+ and Mg2+ were higher when the northeasterly wind prevailed and the wind speed was high. High values of SOR and NOR were correlated with low temperatures and high relative humidity (T < 8℃, RH > 60%), demonstrating that more gaseous precursors were converted into sulfate and nitrate. At high temperatures (T > 24℃), there was no apparent high NOR value like that for SOR, mainly due to the decomposition of NH4NO3 at high temperatures. Finally, backward trajectories associated with the PMF-resolved results were used to explore the regional transport characteristics. The results illustrated that dust sources in the study areas were mainly influenced by air trajectories originating from the northwest regions, whereas secondary sulfate, secondary nitrate, and biomass sources contributed more to WSIIs when wind speed and altitude air masses were low in the area surrounding the observation site.

8.
Huan Jing Ke Xue ; 42(9): 4140-4150, 2021 Sep 08.
Artículo en Zh | MEDLINE | ID: mdl-34414712

RESUMEN

This study analyzed the seasonal variation, sources, and source-specific health risks of PM2.5-bound metals in Xinxiang city, Henan province. A total of 112 daily PM2.5 samples were collected over four consecutive seasons during 2019-2020. In total, 19 elements were identified using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The annual concentrations of PM2.5 and 11 heavy metals were calculated to be (66.25±35.73) µg·m-3 and (1.32±0.84) µg·m-3, respectively. Strong seasonal variations were observed in PM2.5 concentrations and the concentrations of associated metal elements, with the lowest concentrations all occurring in summer. The highest concentrations of dust-related elements (e.g., Al, Ca, Fe, Mg,and Ti) were recorded in spring, differing significantly from other elements, which all exhibited the highest mass concentrations in winter. The results apportioned from positive matrix factorization (PMF) and potential source contribution function (PSCF) models showed that the major sources of PM2.5-bound elements were Ni-and Co-related emissions (5.8%), motor vehicles (13.7%), Cd-related emissions(5.1%), combustion emissions (18.2%), and dust (57.3%). Health risk models showed that there were no obvious non-carcinogenic risks associated with these metals, because their hazard quotient (HQ) values were all below 1. Lifetime carcinogenic risks of the five apportioned sources were all higher than the acceptable level (1×10-6). Of these five sources, combustion emissions were the largest contributors to cancer risk (8.74×10-6, 36.9%) and non-cancer risk (0.60, 25.6%). This study suggests that control strategies to mitigate exposure risk in Xinxiang should emphasize reducing the sources of combustion emissions.


Asunto(s)
Metales Pesados , Material Particulado , Clima , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA