Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139163

RESUMEN

Plant mitochondria are crucial for species evolution, phylogenetics, classification, and identification as maternal genetic material. However, the presence of numerous repetitive sequences, complex structures, and a low number of genes in the mitochondrial genome has hindered its complete assembly and related research endeavors. In this study, we assembled two mitochondrial genomes of alfalfa varieties of Zhongmu No.1 (299,123 bp) and Zhongmu No.4 (306,983 bp), based on a combination of PacBio, Illumina, and Hi-C sequences. The comparison of genome assemblies revealed that the same number of mitochondrial genes, including thirty-three protein-coding genes, sixteen tRNA genes, and three rRNA genes existed in the two varieties. Additionally, large fragments of repetitive sequences were found underlying frequent mitochondrial recombination events. We observed extensive transfer of mitochondrial fragments into the nuclear genome of Zhongmu No.4. Analysis of the cox1 and rrn18s genes in 35 Medicago accessions revealed the presence of population-level deletions and substitutions in the rrn18s gene. We propose that mitochondrial structural reorganizations may contribute to alfalfa evolution.


Asunto(s)
Genoma Mitocondrial , Medicago sativa/genética , ADN Mitocondrial/genética , Medicago/genética , Mitocondrias/genética
2.
Commun Biol ; 7(1): 117, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253824

RESUMEN

The naturally attached phyllosphere microbiota play a crucial role in plant-derived fermentation, but the structure and function of phyllosphere endophytes remain largely unidentified. Here, we reveal the diversity, specificity, and functionality of phyllosphere endophytes in alfalfa (Medicago sativa L.) through combining typical microbial culture, high-throughput sequencing, and genomic comparative analysis. In comparison to phyllosphere bacteria (PB), the fermentation of alfalfa solely with endophytes (EN) enhances the fermentation characteristics, primarily due to the dominance of specific lactic acid bacteria (LAB) such as Lactiplantibacillus, Weissella, and Pediococcus. The inoculant with selected endophytic LAB strains also enhances the fermentation quality compared to epiphytic LAB treatment. Especially, one key endophytic LAB named Pediococcus pentosaceus EN5 shows enrichment of genes related to the mannose phosphotransferase system (Man-PTS) and carbohydrate-metabolizing enzymes and higher utilization of carbohydrates. Representing phyllosphere, endophytic LAB shows great potential of promoting ensiling and provides a novel direction for developing microbial inoculant.


Asunto(s)
Lactobacillales , Humanos , Lactobacillales/genética , Fermentación , Ensilaje , Endófitos/genética , Genómica
3.
Plant Physiol Biochem ; 213: 108868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917738

RESUMEN

The chloroplast biogenesis occurs in cotyledon during alfalfa seed germination before true leaf formation, and is extremely important for the followed plant development and growth. In this study, we conducted a simulation of alfalfa seed germination in the soil by using tin foil and focused on 10 pivotal time points of chloroplast biogenesis in cotyledons before and after light exposure, which showed significant differences in multispectral images, and covered the whole process of chloroplast biogenesis from proplastid, etioplast to mature chloroplast. We revealed three phases that referred to the programmed involvements of photosynthesis promotion, ultrastructure maturity, transcriptomic expression, and protein complex construction, and observed distinct transcriptional expressions of genes from nuclear and chloroplast genomes. In phase I at dark germination before light exposure, chloroplast-encoded genes showed up-regulated expressions together with the importation of chloroplast proteins. In phase II for the first day after light exposure, nuclear-encoded genes' expressions were initiated at 2 h after light exposure (E2h), followed by swift assembly of chloroplast thylakoid membrane protein complexes, and roaring Fv/Fm and contents of chlorophyll a, chlorophyll b and carotenoid. The initiation at E2h was pronounced by the observation of gradual accumulation of single lamella, and facilitated the formation of granum stacks (thylakoid) at E8h in phase II. In phase III from the second day after light exposure, chloroplast became gradually complete with the fully established photosynthetic capacity. Altogether, our results layed a theoretical foundation for enhancing potential photosynthetic efficiency in alfalfa and related species.


Asunto(s)
Cloroplastos , Regulación de la Expresión Génica de las Plantas , Germinación , Medicago sativa , Fotosíntesis , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/crecimiento & desarrollo , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo
4.
Curr Res Food Sci ; 9: 100784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005497

RESUMEN

Food fraud is widespread in the aquatic food market, hence fast and non-destructive methods of identification of fish flesh are needed. In this study, multispectral imaging (MSI) was used to screen flesh slices from 20 edible fish species commonly found in the sea around Yantai, China, by combining identification based on the mitochondrial COI gene. We found that nCDA images transformed from MSI data showed significant differences in flesh splices of the 20 fish species. We then employed eight models to compare their prediction performances based on the hold-out method with 70% training and 30% test sets. Convolutional neural network (CNN), quadratic discriminant analysis (QDA), support vector machine (SVM), and linear discriminant analysis (LDA) models perform well on cross-validation and test data. CNN and QDA achieved more than 99% accuracy on the test set. By extracting the CNN features for optimization, a very high degree of separation was obtained for all species. Furthermore, based on the Gini index in RF, 11 bands were selected as key classification features for CNN, and an accuracy of 98% was achieved. Our study developed a successful pipeline for employing machine learning models (especially CNN) on MSI identification of fish flesh, and provided a convenient and non-destructive method to determine the marketing of fish flesh in the future.

5.
Sci Total Environ ; 931: 172904, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703845

RESUMEN

Enhanced nitrogen (N) input is expected to influence the soil phosphorus (P) cycling through biotic and abiotic factors. Among these factors, soil microorganisms play a vital role in regulating soil P availability. However, the divergent contribution of functional microorganisms to soil P availability in the rhizosphere and bulk soil under N addition remains unclear. We conducted an N addition experiment with four N input rates (0, 5, 10, and 15 g N m-2 year-1) in an alpine meadow over three years. Metagenomics was employed to investigate the functional microbial traits in the rhizosphere and bulk soil. We showed that N addition had positive effects on microbial functional traits related to P-cycling in the bulk and rhizosphere soil. Specifically, high N addition significantly increased the abundance of most microbial genes in the bulk soil but only enhanced the abundance of five genes in the rhizosphere soil. The soil compartment, rather than the N addition treatment, was the dominant factor explaining the changes in the diversity and network of functional microorganisms. Furthermore, the abundance of functional microbial genes had a profound effect on soil available P, particularly in bulk soil P availability driven by the ppa and ppx genes, as well as rhizosphere soil P availability driven by the ugpE gene. Our results highlight that N addition stimulates the microbial potential for soil P mobilization in alpine meadows. Distinct microbial genes play vital roles in soil P availability in bulk and rhizosphere soil respectively. This indicates the necessity for models to further our knowledge of P mobilization processes from the bulk soil to the rhizosphere soil, allowing for more precise predictions of the effects of N enrichment on soil P cycling.


Asunto(s)
Pradera , Nitrógeno , Fósforo , Rizosfera , Microbiología del Suelo , Suelo , Fósforo/análisis , Nitrógeno/metabolismo , Nitrógeno/análisis , Suelo/química , Microbiota
6.
Biomolecules ; 14(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38672421

RESUMEN

Captivity is an important and efficient technique for rescuing endangered species. However, it induces infertility, and the underlying mechanism remains obscure. This study used the plateau pika (Ochotona curzoniae) as a model to integrate physiological, metagenomic, metabolomic, and transcriptome analyses and explore whether dysbiosis of the gut microbiota induced by artificial food exacerbates infertility in captive wild animals. Results revealed that captivity significantly decreased testosterone levels and the testicle weight/body weight ratio. RNA sequencing revealed abnormal gene expression profiles in the testicles of captive animals. The microbial α-diversity and Firmicutes/Bacteroidetes ratio were drastically decreased in the captivity group. Bacteroidetes and Muribaculaceae abundance notably increased in captive pikas. Metagenomic analysis revealed that the alteration of flora increased the capacity for carbohydrate degradation in captivity. The levels of microbe metabolites' short-chain fatty acids (SCFAs) were significantly high in the captive group. Increasing SCFAs influenced the immune response of captivity plateau pikas; pro-inflammatory cytokines were upregulated in captivity. The inflammation ultimately contributed to male infertility. In addition, a positive correlation was observed between Gastranaerophilales family abundance and testosterone concentration. Our results provide evidence for the interactions between artificial food, the gut microbiota, and male infertility in pikas and benefit the application of gut microbiota interference in threatened and endangered species.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Infertilidad Masculina , Lagomorpha , Testosterona , Animales , Masculino , Disbiosis/microbiología , Disbiosis/metabolismo , Infertilidad Masculina/microbiología , Infertilidad Masculina/metabolismo , Testosterona/metabolismo , Lagomorpha/microbiología , Testículo/microbiología , Testículo/metabolismo , Ácidos Grasos Volátiles/metabolismo
7.
Commun Biol ; 7(1): 19, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182881

RESUMEN

Sainfoin (Onobrychis viciifolia), which belongs to subfamily Papilionoideae of Leguminosae, is a vital perennial forage known as "holy hay" due to its high contents of crude proteins and proanthocyanidins (PAs, also called condensed tannins) that have various pharmacological properties in animal feed, such as alleviating rumen tympanic disease in ruminants. In this study, we select an autotetraploid common sainfoin (2n = 4x = 28) and report its high-quality chromosome-level genome assembly with 28 pseudochromosomes and four haplotypes (~1950.14 Mb, contig N50 = 10.91 Mb). The copy numbers of genes involved in PA biosynthesis in sainfoin are significantly greater than those in four selected Fabales species, namely, autotetraploid Medicago sativa and three other diploid species, Lotus japonicus, Medicago truncatula, and Glycine max. Furthermore, gene expansion is confirmed to be the key contributor to the increased expression of these genes and subsequent PA enhancement in sainfoin. Transcriptomic analyses reveal that the expression of genes involved in the PA biosynthesis pathway is significantly increased in the lines with high PA content compared to the lines with medium and low PA content. The sainfoin genome assembly will improve our understanding of leguminous genome evolution and biosynthesis of secondary metabolites in sainfoin.


Asunto(s)
Fabaceae , Proantocianidinas , Animales , Fabaceae/genética , Metabolismo Secundario , Cromosomas , Dosificación de Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA