Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Plant Physiol ; 195(3): 1995-2015, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38507576

RESUMEN

Grapevine (Vitis vinifera L.) incurs severe quality degradation and yield loss from powdery mildew, a major fungal disease caused by Erysiphe necator. ENHANCED DISEASE RESISTANCE1 (EDR1), a Raf-like mitogen-activated protein kinase kinase kinase, negatively regulates defense responses against powdery mildew in Arabidopsis (Arabidopsis thaliana). However, little is known about the role of the putatively orthologous EDR1 gene in grapevine. In this study, we obtained grapevine VviEDR1-edited lines using CRISPR/Cas9. Plantlets containing homozygous and bi-allelic indels in VviEDR1 developed leaf lesions shortly after transplanting into the soil and died at the seedling stage. Transgenic plants expressing wild-type VviEDR1 and mutant Vviedr1 alleles as chimera (designated as VviEDR1-chi) developed normally and displayed enhanced resistance to powdery mildew. Interestingly, VviEDR1-chi plants maintained a spatiotemporally distinctive pattern of VviEDR1 mutagenesis: while almost no mutations were detected from terminal buds, ensuring normal function of the apical meristem, mutations occurred in young leaves and increased as leaves matured, resulting in resistance to powdery mildew. Further analysis showed that the resistance observed in VviEDR1-chi plants was associated with callose deposition, increased production of salicylic acid and ethylene, H2O2 production and accumulation, and host cell death. Surprisingly, no growth penalty was observed with VviEDR1-chi plants. Hence, this study demonstrated a role of VviEDR1 in the negative regulation of resistance to powdery mildew in grapevine and provided an avenue for engineering powdery mildew resistance in grapevine.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Mutación , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Vitis , Vitis/genética , Vitis/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Mutación/genética , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Erysiphe/genética , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Sistemas CRISPR-Cas
2.
Plant Cell ; 34(11): 4329-4347, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35916734

RESUMEN

The mechanisms underlying leafy heads in vegetables are poorly understood. Here, we cloned a quantitative trait locus (QTL) controlling leafy heads in lettuce (Lactuca sativa). The QTL encodes a transcription factor, SAWTOOTH 1 (LsSAW1), which has a BEL1-like homeodomain and is a homolog of Arabidopsis thaliana. A 1-bp deletion in Lssaw1 contributes to the development of leafy heads. Laser-capture microdissection and RNA-sequencing showed that LsSAW1 regulates leaf dorsiventrality and loss-of-function of Lssaw1 downregulates the expression of many adaxial genes but upregulates abaxial genes. LsSAW1 binds to the promoter region of the adaxial gene ASYMMETRIC LEAVES 1 (LsAS1) to upregulate its expression. Overexpression of LsAS1 compromised the effects of Lssaw1 on heading. LsSAW1 also binds to the promoter region of the abaxial gene YABBY 1 (LsYAB1), but downregulates its expression. Overexpression of LsYAB1 led to bending leaves in LsSAW1 genotypes. LsSAW1 directly interacts with KNOTTED 1 (LsKN1), which is necessary for leafy heads in lettuce. RNA-seq data showed that LsSAW1 and LsKN1 exert antagonistic effects on the expression of thousands of genes. LsSAW1 compromises the ability of LsKN1 to repress LsAS1. Our results suggest that downregulation or loss-of-function of adaxial genes and upregulation of abaxial genes allow for the development of leafy heads.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lactuca/genética , Lactuca/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
3.
J Am Chem Soc ; 146(23): 15833-15842, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38819396

RESUMEN

Ruthenium(II) complexes are known to form η6-arene complexes with benzene-containing compounds through π-coordination, a property extensively utilized to initiate reactions not typically observed with free arenes. A prime example is nucleophilic aromatic substitution, where ruthenium-complexed aryl halides undergo nucleophilic attack, allowing the direct synthesis of diverse aromatic compounds by displacing halides with nucleophiles. However, this activation relies on the electron-withdrawing effect of the Ru(II) species, as well as is hindered by the resistance of η6-arenes to arene exchange. In the previous pursuit of catalysis, the emphasis of ligand design has centered on promoting arene exchange. In this study, we extended the ruthenium activation strategy to umpolung substitution reactions of phenols. The amination proceeds through a direct condensation between phenols and amines, with a key intermediate identified as [bis(η5-phenoxo)Ru], which is in situ generated from a commercially available ruthenium catalyst. In comparison with the well-studied cyclopentadienyl (Cp) type ligands, we demonstrated that an η5-phenoxo motif, as a superior alternative to Cp, contributes to the amination of phenols in two crucial ways: its less electron-donating nature enhances the withdrawing effect of the ruthenium unit, facilitating substitution on the phenol complex; its distinctive behavior in arene exchange allows for conducting the amination with a catalytic amount of metal. Additionally, hydrogen bonding, wherein the phenoxo serves as the acceptor, was found to be important for the substitution. The versatility of this ruthenium-catalyzed amination was validated by performing reactions with a diverse array of phenols exhibiting various electronic properties, in combination with a wide range of primary amines. This work exemplifies the expansion of the scope of π-coordination activation in catalysis through innovative ligand development.

4.
J Neurophysiol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39015075

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease, and mild cognitive impairment (MCI) is considered a transitional stage between healthy aging and dementia. Early detection of MCI can help slow down the progression of AD. At present, there are few studies exploring the characteristics of abnormal dynamic brain activity in AD. This article uses a method called Leading Eigenvector Dynamics Analysis (LEiDA) to study resting-state functional magnetic resonance imaging (rs-fMRI) data of AD, MCI, and cognitively normal (CN) participants. By identifying repetitive states of phase coherence, inter group differences in brain dynamic activity indicators are examined. And the neurobehavioral scales were used to assess the relationship between abnormal dynamic activities and cognitive function. The results showed that in the indicators of occurrence probability and lifetime, the globally synchronized state of the patient group decreased. The activity state of the limbic regions significantly detected the difference between AD and the other two groups. Compared to CN, AD and MCI have varying degrees of increase in default and visual regions activity states. In addition, in the analysis related to the cognitive scales, it was found that individuals with poorer cognitive abilities were less active in the globally synchronized state, and more active in limbic regions activity state and visual regions activity state. Taken together, these findings reveal abnormal dynamic activity of resting-state networks in patients with AD and MCI, provide new insights into the dynamic analysis of brain networks, and contribute to a deeper understanding of abnormal spatial dynamic patterns in AD patients.

5.
Anal Chem ; 96(18): 7265-7273, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38649306

RESUMEN

The unique optoelectronic and tunable luminescent characteristics of copper nanoclusters (Cu NCs) make them extremely promising as luminophores. However, the limited luminescence intensity and stability of Cu NCs have restricted their application in the field of electrochemiluminescence (ECL). Herein, a self-assembly-induced enhancement strategy was successfully employed to enhance the cathodic ECL performance of flexible ligand-stabilized Cu NCs. Specifically, Cu NCs form ordered sheetlike structures through intermolecular force. The restriction of ligand torsion in this self-assembled structure leads to a significant improvement in the ECL properties of the Cu NCs. Experimental results demonstrate that the assembled nanoscale Cu NC sheets exhibit an approximately three-fold increase in cathodic ECL emission compared to the dispersed state of Cu NCs. Furthermore, assembled nanoscale Cu NCs sheets were utilized as signal probes in conjunction with a specific short peptide derived from the catalytic structural domain of matrix metalloproteinase 14 (MMP 14) as the identification probe, thereby establishing a split-type ECL sensing platform for the quantification of NMP 14. The investigation has revealed the exceptional performance of assembled nanoscale Cu NCs sheets in ECL analysis, thus positioning them as novel and promising signal probes with significant potential in the field of sensing.


Asunto(s)
Cobre , Técnicas Electroquímicas , Mediciones Luminiscentes , Metaloproteinasa 14 de la Matriz , Nanopartículas del Metal , Cobre/química , Técnicas Electroquímicas/métodos , Nanopartículas del Metal/química , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/análisis , Electrodos , Humanos
6.
Anal Chem ; 96(25): 10116-10120, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38858219

RESUMEN

In this letter, a sensitive microfluidic immunosensor chip was developed using tetrakis(4-aminophenyl)ethene (TPE)-derived covalent organic frameworks (T-COF) as aggregation-induced electrochemiluminescence (AIECL) emitters and nanobodies as efficient immune recognition units for the detection of thymic stromal lymphopoietin (TSLP), a novel target of asthma. The internal rotation and vibration of TPE molecules were constrained within the framework structure, forcing nonradiative relaxation to convert into pronounced radiative transitions. A camel-derived nanobody exhibited superior specificity, higher residual activity and epitope recognition postcuring compared to monoclonal antibodies. Benefiting from the affinity between silver ions (Ag+) and cytosine (C), a double-stranded DNA (dsDNA) embedded with Ag+ was modified onto the surface of TSLP. A positive correlation was obtained between the TSLP concentration (1.00 pg/mL to 4.00 ng/mL) and ECL intensity, as Ag+ was confirmed to be an excellent accelerator of the generation of free radical species. We propose that utilizing COF to constrain luminescent molecules and trigger the AIECL phenomenon is another promising method for preparing signal tags to detect low-abundance disease-related markers.


Asunto(s)
Citocinas , Técnicas Electroquímicas , Mediciones Luminiscentes , Estilbenos , Linfopoyetina del Estroma Tímico , Citocinas/análisis , Citocinas/metabolismo , Estilbenos/química , Humanos , Estructuras Metalorgánicas/química , Técnicas Biosensibles , Inmunoensayo/métodos , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Técnicas Analíticas Microfluídicas/instrumentación
7.
Small ; 20(26): e2311802, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258398

RESUMEN

Conductive polymers are recognized as ideal candidates for the development of noninvasive and wearable sensors for real-time monitoring of potassium ions (K+) in sweat to ensure the health of life. However, the low ion-to-electron transduction efficiency and limited active surface area hamper the development of high-performance sensors for low-concentration K+ detection in the sweat. Herein, a wearable K+ sensor is developed by tailoring the nanostructure of polypyrrole (PPy), serving as an ion-to-electron transduction layer, for accurately and stably tracing the K+ fluctuation in human sweat. The PPy nanostructures can be tailored from nanospheres to nanofibers by controlling the supramolecular assembly process during PPy polymerization. Resultantly, the ion-to-electron transduction efficiency (17-fold increase in conductivity) and active surface area (1.3-fold enhancement) are significantly enhanced, accompanied by minimized water layer formation. The optimal PPy nanofibers-based K+ sensor achieved a high sensitivity of 62 mV decade-1, good selectivity, and solid stability. After being integrated with a temperature sensor, the manufactured wearable sensor realized accurate monitoring of K+ fluctuation in the human sweat.


Asunto(s)
Nanofibras , Polímeros , Potasio , Pirroles , Dispositivos Electrónicos Vestibles , Nanofibras/química , Pirroles/química , Polímeros/química , Potasio/química , Potasio/análisis , Humanos , Técnicas Biosensibles/métodos , Electrones , Iones , Sudor/química , Conductividad Eléctrica
8.
Plant Physiol ; 192(4): 2737-2755, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37086480

RESUMEN

Magnesium chelatase (MgCh) catalyzes the insertion of magnesium into protoporphyrin IX, a vital step in chlorophyll (Chl) biogenesis. The enzyme consists of 3 subunits, MgCh I subunit (CHLI), MgCh D subunit (CHLD), and MgCh H subunit (CHLH). The CHLI subunit is an ATPase that mediates catalysis. Previous studies on CHLI have mainly focused on model plant species, and its functions in other species have not been well described, especially with regard to leaf coloration and metabolism. In this study, we identified and characterized a CHLI mutant in strawberry species Fragaria pentaphylla. The mutant, noted as p240, exhibits yellow-green leaves and a low Chl level. RNA-Seq identified a mutation in the 186th amino acid of the CHLI subunit, a base conserved in most photosynthetic organisms. Transient transformation of wild-type CHLI into p240 leaves complemented the mutant phenotype. Further mutants generated from RNA-interference (RNAi) and CRISPR/Cas9 gene editing recapitulated the mutant phenotype. Notably, heterozygous chli mutants accumulated more Chl under low light conditions compared with high light conditions. Metabolite analysis of null mutants under high light conditions revealed substantial changes in both nitrogen and carbon metabolism. Further analysis indicated that mutation in Glu186 of CHLI does not affect its subcellular localization nor the interaction between CHLI and CHLD. However, intramolecular interactions were impaired, leading to reduced ATPase and MgCh activity. These findings demonstrate that Glu186 plays a key role in enzyme function, affecting leaf coloration via the formation of the hexameric ring itself, and that manipulation of CHLI may be a means to improve strawberry plant fitness and photosynthetic efficiency under low light conditions.


Asunto(s)
Fragaria , Liasas , Mutación Puntual , Fragaria/genética , Fragaria/metabolismo , Liasas/genética , Liasas/metabolismo , Mutación/genética , Adenosina Trifosfatasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Clorofila/metabolismo
9.
Opt Express ; 32(7): 11643-11653, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571006

RESUMEN

The radiation characteristics of microalgae are of great significance for the design of photobioreactors and ocean optical remote sensing. Yet the complex structure of microalgae makes it difficult to theoretically predict its radiation characteristics based on traditional Mie theory. In this work, taking Chlamydomonas reinhardtii as an example, a multi-component cell model with a complex structure is proposed, which considers the organelles and shape of microalgae, and the volume change during the production of Chlamydomonas reinhardtii lipids. The theoretical calculation is carried out using the discrete dipole approximation method, and an improved transmission method is used for experimental measurement. The experimental data are compared and analyzed with the multi-component complex structure model, the homogeneous sphere model and the coated sphere model. The results show that the calculation accuracy of the multi-component complex structure model is higher, the error of the scattering cross-section is reduced by more than 8.6% compared with the homogeneous sphere model and coated sphere model, and the absorption cross-section and the scattering phase function are in good agreement with the experimental results. With the increase of lipids, the absorption cross-section and the scattering phase function vary slightly. However, the scattering cross-section has an observed change with increasing wavelength. In addition, the theoretical calculation error can be reduced when the influence of the culture medium is taken into account.

10.
Cardiovasc Diabetol ; 23(1): 237, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970008

RESUMEN

BACKGROUND: Atherogenic index of plasma (AIP) is a non-traditional lipid parameter that can reflect the burden of atherosclerosis. A lipid profile resembling atherosclerosis emerged during pregnancy. Although lipid metabolism is pivotal in diabetes pathogenesis, there is no evidence linking AIP to gestational diabetes mellitus (GDM). Therefore, our objective was to explore the relationship between AIP and GDM and assess AIP's predictive capability for GDM. METHODS: This was a secondary analysis based on data from a prospective cohort study in Korea involving 585 single pregnant women. AIP was calculated as log10 (TG/HDL). We examined the relationship between AIP and GDM using logistic regression models, curve fitting, sensitivity analyses, and subgroup analyses. Receiver operating characteristic (ROC) analysis was also used to determine the ability of AIP to predict GDM. RESULTS: The average age of the participants was 32.06 ± 3.76 years. The AIP was 0.24 ± 0.20 on average. The GDM incidence was 6.15%. After adjustment for potentially confounding variables, AIP showed a positive linear relationship with GDM (P for non-linearity: 0.801, OR 1.58, 95% CI 1.27-1.97). The robustness of the connection between AIP and GDM was demonstrated by sensitivity analyses and subgroup analyses. An area under the ROC curve of 0.7879 (95% CI 0.7087-0.8671) indicates that AIP is an excellent predictor of GDM. With a specificity of 75.41% and sensitivity of 72.22%, the ideal AIP cut-off value for identifying GDM was 0.3557. CONCLUSIONS: This study revealed that the AIP at 10-14 weeks of gestation was independently and positively correlated with GDM risk. AIP could serve as an early screening and monitoring tool for pregnant women at high risk of GDM, thereby optimizing GDM prevention strategies. TRIAL REGISTRATION: ClinicalTrials.gov registration no. NCT02276144.


Asunto(s)
Aterosclerosis , Biomarcadores , Diabetes Gestacional , Valor Predictivo de las Pruebas , Humanos , Diabetes Gestacional/sangre , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/epidemiología , Femenino , Embarazo , Estudios Prospectivos , Adulto , República de Corea/epidemiología , Factores de Riesgo , Biomarcadores/sangre , Aterosclerosis/sangre , Aterosclerosis/epidemiología , Aterosclerosis/diagnóstico , Medición de Riesgo , Incidencia , Triglicéridos/sangre
11.
Toxicol Appl Pharmacol ; 486: 116946, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679241

RESUMEN

The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) has not been fully elucidated. Gestational hypertension could double the probability of ADHD in the offspring, while the initial bacterial communication between the mother and offspring has been associated with psychiatric disorders. Thus, we hypothesize that antihypertensive treatment during pregnancy may abate the impairments in neurodevelopment of the offspring. To test this hypothesis, we chose Captopril and Labetalol, to apply to pregnant spontaneously hypertensive rat (SHR) dams and examined the outcomes in the male offspring. Our data demonstrated that maternal treatment with Captopril and Labetalol had long-lasting changes in gut microbiota and behavioral alterations, including decreased hyperactivity and increased curiosity, spatial learning and memory in the male offspring. Increased diversity and composition were identified, and some ADHD related bacteria were found to have the same change in the gut microbiota of both the dam and offspring after the treatments. LC-MS/MS and immunohistochemistry assays suggested elevated expression of brain derived neurotrophic factor (BDNF) and dopamine in the prefrontal cortex and striatum of offspring exposed to Captopril/ Labetalol, which may account for the improvement of the offspring's psychiatric functions. Therefore, our results support the beneficial long-term effects of the intervention of gestational hypertension in the prevention of ADHD.


Asunto(s)
Antihipertensivos , Trastorno por Déficit de Atención con Hiperactividad , Conducta Animal , Captopril , Microbioma Gastrointestinal , Efectos Tardíos de la Exposición Prenatal , Ratas Endogámicas SHR , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Embarazo , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Femenino , Antihipertensivos/farmacología , Captopril/farmacología , Masculino , Ratas , Conducta Animal/efectos de los fármacos , Labetalol/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipertensión Inducida en el Embarazo/inducido químicamente , Dopamina/metabolismo
12.
Environ Res ; 244: 117925, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103773

RESUMEN

BACKGROUND: Disinfection byproducts (DBPs), the ubiquitous contaminants in drinking water, have been shown to impair renal function in experimental studies. However, epidemiological evidence is sparse. OBJECTIVE: To investigate exposures to DBPs in associations with renal function among women. METHODS: A total of 920 women from December 2018 to January 2020 were abstracted from the Tongji Reproductive and Environmental (TREE) Study, an ongoing cohort study in Wuhan, China. Urine samples were gathered at baseline recruitment and analyzed for dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) as biomarkers of DBP exposures. Serum uric acid (UA), creatinine, and estimated glomerular filtration rate (eGFR) were measured as indicators of renal function. Multivariate linear regression and restricted cubic spline (RCS) models were conducted to assess urinary DCAA and TCAA concentrations in associations with renal function indicators. Stratified analyses by age and body mass index (BMI) were also performed. RESULTS: We found null evidence of urinary TCAA in associations with renal function indicators. However, elevated urinary DCAA tertiles were related to decreased eGFR (ß = -1.78%, 95% CI: 3.21%, -0.36%, comparing the upper vs. lower tertile; P for trend = 0.01). This inverse association still existed when urinary DCAA concentration was treated as a continuous variable, and the dose-response relationship was linear based on the RCS model (P for overall association = 0.002 and P for non-linear associations = 0.44). In the stratified analyses, we found an association of urinary DCAA concentration with decreased UA level among women <30 years but an association with increased UA level among women ≥30 years (P for interaction = 0.04). CONCLUSION: Urinary DCAA but not TCAA was associated with impaired renal function among women undergoing assisted reproductive technology.


Asunto(s)
Desinfección , Agua Potable , Humanos , Femenino , Estudios de Cohortes , Ácido Úrico , Ácido Tricloroacético/orina , China/epidemiología , Ácido Dicloroacético/orina , Riñón
13.
J Nanobiotechnology ; 22(1): 361, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910236

RESUMEN

Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.


Asunto(s)
Autofagia , Frío , Exosomas , Ratones Endogámicos C57BL , MicroARNs , Osteogénesis , Animales , Autofagia/efectos de los fármacos , Ratones , Exosomas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/patología , Diferenciación Celular/efectos de los fármacos , Huesos/metabolismo , Femenino , Densidad Ósea , Sirolimus/farmacología
14.
World J Surg Oncol ; 22(1): 64, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395933

RESUMEN

OBJECTIVE: The aim of this study was to establish a preoperative model to predict the outcome of primary debulking surgery (PDS) for advanced ovarian cancer (AOC) patients by combing Suidan predictive model with HE4, CA125, CA153 and ROMA index. METHODS: 76 AOC Patients in revised 2014 International Federation of Gynecology and Obstetrics (FIGO) stage III-IV who underwent PDS between 2017 and 2019 from Yunnan Cancer Hospital were included. Clinical data including the levels of preoperative serum HE4, CA125, CA153 and mid-lower abdominal CT-enhanced scan results were collected. The logistics regression analysis was performed to find factors associated with sub-optimal debulking surgery (SDS). The receiver operating characteristic curve was used to evaluate the predictive performances of selected variables in the outcome of primary debulking surgery. The predictive index value (PIV) model was constructed to predict the outcome of SDS. RESULTS: Optimal surgical cytoreduction was achieved in 61.84% (47/76) patients. The value for CA125, HE4, CA153, ROMA index and Suidan score was lower in optimal debulking surgery (ODS) group than SDS group. Based on the Youden index, which is widely used for evaluating the performance of predictive models, the best cutoff point for the preoperative serum HE4, CA125, CA153, ROMA index and Suidan score to distinguish SDS were 431.55 pmol/l, 2277 KU/L, 57.19 KU/L, 97.525% and 2.5, respectively. Patients with PIV≥5 may not be able to achieve optimal surgical cytoreduction. The diagnostic accuracy, NPV, PPV and specificity for diagnosing SDS were 73.7%, 82.9%, 62.9% and 72.3%, respectively. In the constructed model, the AUC of the SDS prediction was 0.770 (95% confidence interval: 0.654-0.887), P<0.001. CONCLUSION: Preoperative serum CA153 level is an important non-invasive predictor of primary SDS in advanced AOC, which has not been reported before. The constructed PIV model based on Suidan's predictive model plus HE4, CA125, CA153 and ROMA index can noninvasively predict SDS in AOC patients, the accuracy of this prediction model still needs to be validated in future studies.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Algoritmos , Biomarcadores de Tumor , Antígeno Ca-125 , Carcinoma Epitelial de Ovario/cirugía , China , Procedimientos Quirúrgicos de Citorreducción/métodos , Neoplasias Ováricas/cirugía , Neoplasias Ováricas/diagnóstico , Proteínas/análisis , Antígenos de Neoplasias
15.
Ecotoxicol Environ Saf ; 269: 115741, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029584

RESUMEN

BACKGROUND: Experimental studies have shown that disinfection byproducts (DBPs) induce coagulotoxicity, but human evidence is scarce. OBJECTIVE: This study aimed to explore the relationships of DBP exposures with blood coagulation parameters. METHODS: Among 858 women from the Tongji Reproductive and Environmental (TREE) study, urinary dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were detected as internal biomarkers of DBP exposures. We measured activated partial thromboplastin time (APTT), fibrinogen (Fbg), international normalized ratio (INR), prothrombin time (PT), and thrombin time (TT) as blood coagulation parameters. Multivariable linear regression models were utilized to estimate the relationships between urinary DCAA and TCAA and blood coagulation parameters. The effect modifications by demographic and lifestyle characteristics were further explored. RESULTS: Elevated tertiles of urinary DCAA concentrations were associated with increased PT and INR (11.29%, 95% CI: 1.66%, 20.92% and 0.99%, 95% CI: 0.08%, 1.90% for the third vs. first tertile, respectively; both P for trends < 0.05). Stratification analysis showed that the positive associations were only observed among younger (< 30 years), leaner (body mass index < 24.0 kg/m2), and non-passive smoking women. Moreover, elevated tertiles of urinary TCAA concentrations in positive associations with PT and INR were observed among younger women (17.89%, 95% CI: 2.50%, 33.29% and 1.82%, 95% CI: 0.34%, 3.30% for the third vs. first tertile, respectively; both P for trends < 0.05) but not among older women (both P for interactions < 0.05). CONCLUSION: Higher levels of urinary DCAA and TCAA are associated with prolonged clotting time among women.


Asunto(s)
Desinfección , Reproducción , Humanos , Femenino , Anciano , Desinfección/métodos , Coagulación Sanguínea , Ácido Tricloroacético/orina , Biomarcadores/orina , Ácido Dicloroacético/orina
16.
Plant Dis ; 108(1): 45-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37555725

RESUMEN

Xanthomonas fragariae is classified as a quarantine pathogen by the European and Mediterranean Plant Protection Organization. It commonly induces typical angular leaf spot (ALS) symptoms in strawberry leaves. X. fragariae strains from China (YL19, SHAQP01, and YLX21) exhibit ALS symptoms in leaves and more severe symptoms of dry cavity rot in strawberry crowns. Conversely, strains from other countries do not cause severe dry cavity rot symptoms in strawberries. After employing multilocus sequence analysis (MLSA), average nucleotide identity (ANI), and amino acid identity (AAI), we determined that Chinese strains of X. fragariae are genetically distinct from other strains and can be considered a new subspecies. Subsequent analysis of 63 X. fragariae genomes published at NCBI using IPGA and EDGAR3.0 revealed the pan-genomic profile, with 1,680 shared genes present in all 63 strains, including 71 virulence-related genes. Additionally, we identified 123 genes exclusive to all the Chinese strains, encompassing 12 virulence-related genes. The qRT-PCR analysis demonstrated that the expression of XopD, XopG1, CE8, GT2, and GH121 out of 12 virulence-related genes of Chinese strains (YL19) exhibited a constant increase in the early stages (6, 24, 54, and 96 hours postinoculation [hpi]) of strawberry leaf infected by YL19. So, the presence of XopD, XopG1, CE8, GT2, and GH121 in Chinese strains may play important roles in the early infection process of Chinese strains. These findings offer novel insights into comprehending the population structure and variation in the pathogenic capacity of X. fragariae.


Asunto(s)
Genómica , Xanthomonas , Tipificación de Secuencias Multilocus , Xanthomonas/genética
17.
Nano Lett ; 23(4): 1144-1151, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36749930

RESUMEN

Thermophotovoltaic (TPV) generators provide continuous and high-efficiency power output by utilizing local thermal emitters to convert energy from various sources to thermal radiation matching the bandgaps of photovoltaic cells. Lack of effective guidelines for thermal emission control at high temperatures, poor thermal stability, and limited fabrication scalability are the three key challenges for the practical deployment of TPV devices. Here we develop a hierarchical sequential-learning optimization framework and experimentally realize a 6″ module-scale polaritonic thermal emitter with bandwidth-controlled thermal emission as well as excellent thermal stability at 1473 K. The 300 nm bandwidth thermal emission is realized by a complex photon polariton based on the superposition of Tamm plasmon polariton and surface plasmon polariton. We experimentally achieve a spectral efficiency of 65.6% (wavelength range of 0.4-8 µm) with statistical deviation less than 4% over the 6″ emitter, demonstrating industrial-level reliability for module-scale TPV applications.

18.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892198

RESUMEN

Carpel number (CN) is an important trait affecting the fruit size and shape of melon, which plays a crucial role in determining the overall appearance and market value. A unique non-synonymous single nucleotide polymorphism (SNP) in CmCLAVATA3 (CmCLV3) is responsible for the variation of CN in C. melo ssp. agrestis (hereafter agrestis), but it has been unclear in C. melo ssp. melo (hereafter melo). In this study, one major locus controlling the polymorphism of 5-CN (multi-CN) and 3-CN (normal-CN) in melo was identified using bulked segregant analysis (BSA-seq). This locus was then fine-mapped to an interval of 1.8 Mb on chromosome 12 using a segregating population containing 1451 progeny. CmCLV3 is still present in the candidate region. A new allele of CmCLV3, which contains five other nucleotide polymorphisms, including a non-synonymous SNP in coding sequence (CDS), except the SNP reported in agrestis, was identified in melo. A cis-trans test confirmed that the candidate gene, CmCLV3, contributes to the variation of CNs in melo. The qRT-PCR results indicate that there is no significant difference in the expression level of CmCLV3 in the apical stem between the multi-CN plants and the normal-CN plants. Overall, this study provides a genetic resource for melon fruit development research and molecular breeding. Additionally, it suggests that melo has undergone similar genetic selection but evolved into an independent allele.


Asunto(s)
Cucumis melo , Proteínas de Plantas , Polimorfismo de Nucleótido Simple , Alelos , Mapeo Cromosómico , Cucumis melo/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Genes de Plantas , Fenotipo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo
19.
Chin Med Sci J ; 39(2): 131-139, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38862406

RESUMEN

Brain-computer interface (BCI) technology is rapidly advancing in medical research and application. As an emerging biomedical engineering technology, it has garnered significant attention in the clinical research of brain disease diagnosis and treatment, neurological rehabilitation, and mental health. However, BCI also raises several challenges and ethical concerns in clinical research. In this article, the authors investigate and discuss three aspects of BCI in medicine and healthcare: the state of international ethical governance, multidimensional ethical challenges pertaining to BCI in clinical research, and suggestive concerns for ethical review. Despite the great potential of frontier BCI research and development in the field of medical care, the ethical challenges induced by itself and the complexities of clinical research and brain function have put forward new special fields for ethics in BCI. To ensure "responsible innovation" in BCI research in healthcare and medicine, the creation of an ethical global governance framework and system, along with special guidelines for cutting-edge BCI research in medicine, is suggested.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Investigación Biomédica/ética , Interfaces Cerebro-Computador/ética , Revisión Ética
20.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 512-517, 2024 May 15.
Artículo en Zh | MEDLINE | ID: mdl-38802913

RESUMEN

Glyceryl phenylbutyrate (GPB) serves as a long-term management medication for Ornithine transcarbamylase deficiency (OTCD), effectively controlling hyperammonemia, but there is a lack of experience in using this medicine in China. This article retrospectively analyzes the case of a child diagnosed with OTCD at Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, including a review of related literature. After diagnosis, the patient was treated with GPB, followed by efficacy follow-up and pharmacological monitoring. The 6-year and 6-month-old male patient exhibited poor speech development, disobedience, temper tantrums, and aggressive behavior. Blood ammonia levels peaked at 327 µmol/L; urine organic acid analysis indicated elevated uracil levels; cranial MRI showed extensive abnormal signals in both cerebral hemispheres. Genetic testing revealed de novo mutation in the OTC gene (c.241T>C, p.S81P). Blood ammonia levels were approximately 43, 80, and 56 µmol/L at 1, 2, and 3 months after starting GPB treatment, respectively. During treatment, blood ammonia was well-controlled without drug-related adverse effects. The patient showed improvement in developmental delays, obedience, temperament, and absence of aggressive behavior.


Asunto(s)
Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Fenilbutiratos , Humanos , Masculino , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/tratamiento farmacológico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Fenilbutiratos/uso terapéutico , Niño , Glicerol/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA