Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 354: 120323, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417356

RESUMEN

Accumulation of persistent organic pollutants polycyclic aromatic hydrocarbons (PAHs) in soil has become a global problem. Composting is considered one of the more economical methods of soil remediation and is important for the resourceful use of wastes. Agroforestry waste is produced in huge amounts and is utilized at low rates, hence there is an urgent need to manage it. Here, leaf (LVS) or rice straw (SVS) was co-composting with aged contaminated soil to investigate bacteria interaction to PAHs degradation and humus formation. The degradation rate of high molecular weight PAHs (HMW-PAHs) in LVS and SVS reached 58.9% and 52.5%, and the low molecular weight PAHs (LMW-PAHs) were 77.5% and 65%. Meanwhile, the humus increased by 44.8% and 60.5% in LVS and SVS at the end of co-composting. The topological characteristics and community assembly of the bacterial community showed that LVS had higher complexity and more keystones than SVS, suggesting that LVS might more beneficial for the degradation of PAHs. The stability of the co-occurrence network and stochastic processes (dispersal limitation) dominated community assembly made SVS beneficial for humus formation. Mantel test and structural equation models indicated that the transformation of organic matter was important for PAHs degradation and humus formation. Degradation of HMW-PAHs led to bacterial succession, which affected the formation of precursors and ultimately increased the humus content. This study provided potential technology support for improving the quality of agroforestry organic waste composting and degrading PAHs in aged contaminated soil.


Asunto(s)
Compostaje , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Suelo/química , Bacterias/metabolismo , Microbiología del Suelo
2.
Sci Total Environ ; : 175586, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154998

RESUMEN

Mangrove wetlands are highly productive ecosystems in tropical and subtropical coastal zones, play crucial roles in water purification, biodiversity maintenance, and carbon sequestration. Recent years have seen the implementation of pond return initiatives, which have facilitated the gradual recovery of mangrove areas in China. However, the implications of these initiatives for soil aggregate stability, microbial community structure, and network interactions remain unclear. This study assesses the impacts of converting ponds to mangroves-both in natural and artificially restored settings-on soil aggregate stability and microbial networks at typical mangrove restoration sites along China's southeastern coast. Our observations confirmed our hypothesis that pond-to-mangrove conversions resulted in an increase in the proportion of large aggregates (>0.25 mm), improved soil aggregate structural stability, and increased carbon sequestration. However, mangrove recovery led to a decrease in the abundance and diversity of soil fungi communities. In terms of co-occurrence networks, naturally restored mangrove wetlands exhibited more nodes and edges. The naturally recovered mangrove wetlands demonstrated a higher level of community symbiosis compared to those that were manually restored. Conversely, bacterial networks showed a different pattern, with significant shifts in key taxa related to carbon sequestration functions. For instance, the proportion of bacterial Desulfobacterota and fungi Basidiomycota in natural recovery mangrove increased by 15.03 % and 7.82 %, respectively, compared with that in aquaculture ponds. Soil fungi and bacteria communities, as well as carbon sequestration by aggregates, were all positively correlated with soil total carbon content (P < 0.05). Both bacterial and fungal communities contributed to soil aggregate stability. Our study highlights the complex relationships between soil microbial communities, aggregate stability, and the carbon cycle before and after land-use changes. These findings underscore the potential benefits of restoring mangrove wetlands, as such efforts can enhance carbon storage capacity and significantly contribute to climate change mitigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA