Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(9): 1890-1904.e7, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33657401

RESUMEN

O-linked ß-N-acetyl glucosamine (O-GlcNAc) is attached to proteins under glucose-replete conditions; this posttranslational modification results in molecular and physiological changes that affect cell fate. Here we show that posttranslational modification of serine/arginine-rich protein kinase 2 (SRPK2) by O-GlcNAc regulates de novo lipogenesis by regulating pre-mRNA splicing. We found that O-GlcNAc transferase O-GlcNAcylated SRPK2 at a nuclear localization signal (NLS), which triggers binding of SRPK2 to importin α. Consequently, O-GlcNAcylated SRPK2 was imported into the nucleus, where it phosphorylated serine/arginine-rich proteins and promoted splicing of lipogenic pre-mRNAs. We determined that protein nuclear import by O-GlcNAcylation-dependent binding of cargo protein to importin α might be a general mechanism in cells. This work reveals a role of O-GlcNAc in posttranscriptional regulation of de novo lipogenesis, and our findings indicate that importin α is a "reader" of an O-GlcNAcylated NLS.


Asunto(s)
Neoplasias de la Mama/metabolismo , Glucosa/metabolismo , Lipogénesis , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Neoplasias de la Mama/genética , Proliferación Celular , Femenino , Glicosilación , Células HEK293 , Humanos , Células MCF-7 , Ratones Desnudos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Carga Tumoral , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
2.
Int J Cancer ; 154(8): 1484-1491, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38158593

RESUMEN

Irinotecan plays a crucial role in the neoadjuvant chemoradiotherapy (nCRT) of rectal cancer, but its optimal dosing is still unclear. In this study, we included 101 eligible patients with the UGT1A1*28 genotype of UGT1A1*1*1 (74.3%) and UGT1A1*1*28 (25.7%) and UGT1A1*6 genotypes of GG (63.4%), GA (32.7%), and AA (3.9%). All patients received preoperative radiotherapy (50 Gy/25 fractions) with concurrent irinotecan (UGT1A1*1*1: 80 mg/m2 ; UGT1A1*1*28: 65 mg/m2 ) and capecitabine (CapIri). SN-38 concentrations were measured at 1.5, 24, and 49 h post-administration. Patients were divided into four groups (Q1-Q4) based on the SN-38 concentration. The complete-response (CR) rate was the primary endpoint. The analysis demonstrated that the 49 h SN-38 concentration was relatively optimal for predicting efficacy and toxicity. The Q4 group had a significantly higher CR rate than the Q1 group (p = .019), but also higher rates of adverse events (p = .009). We screened the recommended 49 h SN-38, with a 0.5-1.0 ng/mL concentration range. We also validated the correlation between UGT1A1*6 polymorphism and SN-38 concentration, along with the clinical efficacy of irinotecan. In conclusion, our study identified the relatively optimal timepoint and concentration range for monitoring SN38 concentrations and revealed the clinical significance of UGT1A1*6 and UGT1A1*28 polymorphisms in guiding irinotecan administration, offering meaningful insights for personalised irinotecan dosing.


Asunto(s)
Neoplasias Primarias Secundarias , Neoplasias del Recto , Humanos , Irinotecán , Camptotecina , Terapia Neoadyuvante , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/genética , Neoplasias Primarias Secundarias/etiología , Genotipo , Quimioradioterapia/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
3.
Mol Carcinog ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923019

RESUMEN

This study explores the specific role and underlying mechanisms of ALDH5A1 in the chemoresistance of esophageal squamous cell carcinoma (ESCC). The levels of cleaved caspase-3, 4-hydroxynonenal (4-HNE), intracellular Fe2+, and lipid reactive oxygen species (ROS) were evaluated via immunofluorescence. Cell viability and migration were quantified using cell counting kit-8 assays and wound healing assays, respectively. Flow cytometry was utilized to analyze cell apoptosis and ROS production. The concentrations of malondialdehyde (MDA) and reduced glutathione were determined by enzyme-linked immunosorbent assay. Proteome profiling was performed using data-independent acquisition. Additionally, a xenograft mouse model of ESCC was established to investigate the relationship between ALDH5A1 expression and the cisplatin (DDP)-resistance mechanism in vivo. ALDH5A1 is overexpressed in both ESCC patients and ESCC/DDP cells. Silencing of ALDH5A1 significantly enhances the inhibitory effects of DDP treatment on the viability and migration of KYSE30/DDP and KYSE150/DDP cells and promotes apoptosis. Furthermore, it intensifies DDP's suppressive effects on tumor volume and weight in nude mice. Gene ontology biological process analysis has shown that ferroptosis plays a crucial role in both KYSE30/DDP cells and KYSE30/DDP cells transfected with si-ALDH5A1. Our in vitro and in vivo experiments demonstrate that DDP treatment promotes the accumulation of ROS, lipid ROS, MDA, LPO, and intracellular Fe2+ content, increases the levels of proteins that promote ferroptosis (ACSL4 and FTH1), and decreases the expression of anti-ferroptosis proteins (SLC7A11, FTL, and GPX4). Silencing of ALDH5A1 further amplifies the regulatory effects of DDP both in vitro and in vivo. ALDH5A1 potentially acts as an oncogene in ESCC chemoresistance. Silencing of ALDH5A1 can reduce DDP resistance in ESCC through promoting ferroptosis signaling pathways. These findings suggest a promising strategy for the treatment of ESCC in clinical practice.

4.
Anal Biochem ; 685: 115388, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967783

RESUMEN

The retrospective detection of organophosphorus nerve agents (OPNAs) exposure has been achieved by the off-site analysis of OPNA-human serum albumin (HSA) adducts using mass spectrometry-based detection approaches. However, few specific methods are accessible for on-site detection. To address this, a novel immunofluorescence microfluidic chip (IFMC) testing system combining europium chelated microparticle (EuCM) with self-driven microfluidic chip assay has been established to unambiguously determine soman (GD) and VX exposure within 20 min, respectively. The detection system was based on the principle of indirect competitive enzyme-linked immunosorbent assay. The specific monoclonal antibodies that respectively recognized the phosphonylated tyrosine 411 of GD-HSA and VX-HSA adducts were labeled by EuCM to capture corresponding adducts in the exposed samples. The phosphonylated peptides in the test line and goat-anti-rabbit antibody in the control line were utilized to bind the EuCM-labeled antibodies for signal exhibition. The developed IFMC chip could discriminatively detect exposed HSA adducts with high specificity, demonstrating a low limit of detection at exposure concentrations of 0.5 × 10-6 mol/L VX and 1.0 × 10-6 mol/L GD. The exposed serum samples can be qualitatively detected following an additional pretreatment procedure. This is a novel rapid detection system capable of discriminating GD and VX exposure, providing an alternative method for rapidly identifying OPNA exposure.


Asunto(s)
Soman , Animales , Humanos , Conejos , Soman/metabolismo , Europio , Microfluídica , Estudios Retrospectivos , Albúmina Sérica Humana , Técnica del Anticuerpo Fluorescente
5.
Mol Psychiatry ; 28(10): 4138-4150, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37188779

RESUMEN

Depression is a mental illness frequently accompanied by disordered energy metabolism. A dysregulated hypothalamus pituitary adrenal axis response with aberrant glucocorticoids (GCs) release is often observed in patients with depression. However, the associated etiology between GCs and brain energy metabolism remains poorly understood. Here, using metabolomic analysis, we showed that the tricarboxylic acid (TCA) cycle was inhibited in chronic social defeat stress (CSDS)-exposed mice and patients with first-episode depression. Decreased mitochondrial oxidative phosphorylation was concomitant with the impairment of the TCA cycle. In parallel, the activity of pyruvate dehydrogenase (PDH), the gatekeeper of mitochondrial TCA flux, was suppressed, which is associated with the CSDS-induced neuronal pyruvate dehydrogenase kinase 2 (PDK2) expression and consequently enhanced PDH phosphorylation. Considering the well-acknowledged role of GCs in energy metabolism, we further demonstrated that glucocorticoid receptors (GR) stimulated PDK2 expression by directly binding to its promoter region. Meanwhile, silencing PDK2 abrogated glucocorticoid-induced PDH inhibition, restored the neuronal oxidative phosphorylation, and improved the flux of isotope-labeled carbon (U-13C] glucose) into the TCA cycle. Additionally, in vivo, pharmacological inhibition and neuron-specific silencing of GR or PDK2 restored CSDS-induced PDH phosphorylation and exerted antidepressant activities against chronic stress exposure. Taken together, our findings reveal a novel mechanism of depression manifestation, whereby elevated GCs levels regulate PDK2 transcription via GR, thereby impairing brain energy metabolism and contributing to the onset of this condition.


Asunto(s)
Metabolismo Energético , Complejo Piruvato Deshidrogenasa , Humanos , Ratones , Animales , Complejo Piruvato Deshidrogenasa/metabolismo , Ciclo del Ácido Cítrico/fisiología , Encéfalo/metabolismo , Fosforilación
6.
Liver Int ; 44(5): 1129-1141, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38426611

RESUMEN

BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) is an emerging risk factor for chronic kidney disease (CKD). N-terminal propeptide of collagen type 3 (PRO-C3) is a biomarker of advanced fibrosis in MAFLD and PRO-C3 may be involved in renal fibrosis. We aimed to use PRO-C3 measurements to generate a new algorithmic score to test the prediction of MAFLD with chronic kidney disease (MAFLD-CKD). METHODS: A derivation and independent validation cohort of 750 and 129 Asian patients with biopsy-confirmed MAFLD were included. Serum PRO-C3 concentration was measured and regression analyses were performed to examine associations with MAFLD-CKD. A derivative algorithm for MAFLD-CKD risk prediction was evaluated with receiver operator characteristic (ROC) curve analysis. RESULTS: The study included two Asian cohorts (n = 180 with MAFLD-CKD; mean-eGFR: 94.93 mL/min/1.73 m2; median-urinary albumin-to-creatinine ratio: 6.58 mg/mmol). PRO-C3 was associated with the severity of MAFLD-CKD and independently associated with MAFLD-CKD (adjusted odds ratio = 1.16, 95% confidence interval [CI]: 1.08-1.23, p < .001). A new non-invasive score (termed PERIOD) including PRO-C3 efficiently predicted MAFLD-CKD (AUROC = .842, 95% CI: .805-.875). Accuracy, specificity and negative predictive values were 80.2%, 85.1% and 88.4%, respectively. In the validation cohort, the PERIOD score had good diagnostic performance (AUROC = .807, 95% CI: .691-.893) with similar results in all patient subgroups. In the MAFLD-CKD subgroup, the accuracy for identifying advanced fibrosis was further improved by combining the PRO-C3-based ADAPT with the Agile 3+ scores (AUROC = .90, 95% CI: .836-.964). CONCLUSIONS: The PERIOD score is helpful for accurately predicting the risk of MAFLD-CKD. PRO-C3 can also be used to assess liver fibrosis in people with MAFLD-CKD.


Asunto(s)
Complemento C3 , Enfermedad del Hígado Graso no Alcohólico , Insuficiencia Renal Crónica , Humanos , Complemento C3/análisis , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Insuficiencia Renal Crónica/diagnóstico , Factores de Riesgo , Pueblo Asiatico
7.
Nanotechnology ; 35(16)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154139

RESUMEN

Preparing Cd3As2, which is a three-dimensional (3D) Dirac semimetal in certain crystal orientation, on Si is highly desirable as such a sample may well be fully compatible with existing Si CMOS technology. However, there is a dearth of such a study regarding Cd3As2films grown on Si showing the chiral anomaly. Here,for the first time, we report the novel preparation and fabrication technique of a Cd3As2(112) film on a Si (111) substrate with a ZnTe (111) buffer layer which explicitly shows the chiral anomaly with a nontrivial Berry's phase ofπ. Despite the Hall carrier density (n3D≈9.42×1017cm-3) of our Cd3As2film, which is almost beyond the limit for the portents of a 3D Dirac semimetal to emerge, we observe large linear magnetoresistance in a perpendicular magnetic field and negative magnetoresistance in a parallel magnetic field. These results clearly demonstrate the chiral magnetic effect and 3D Dirac semimetallic behavior in our silicon-based Cd3As2film. Our tailoring growth of Cd3As2on a conventional substrate such as Si keeps the sample quality, while also achieving a low carrier concentration.

8.
Bull Entomol Res ; : 1-12, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38751346

RESUMEN

The Argentine ant (Linepithema humile) and the little fire ant (Wasmannia auropunctata) are among the top 100 invasive alien species globally, causing significant ecological and economic harm. Therefore, it is crucial to study their potential geographic distribution worldwide. This study aimed to predict their global distribution under current and future climate conditions. We used distribution data from various sources, including CABI, GBIF, and PIAKey, and key climate variables selected from 19 environmental factors to model their potential geographic distribution using MaxEnt. The AUC values were 0.925 and 0.937 for L. humile and W. auropunctata, respectively, indicating good predictive performance. Suitable areas for L. humile were mainly in southern North America, northern South America, Europe, central Asia, southern Oceania, and parts of Africa, while W. auropunctata suitable areas were mostly in southern North America, most of South America, a small part of Europe, southern Asia, central Africa, and some parts of Oceania. Under climate change scenario, suitable areas for L. humile increased, while highly suitable areas for W. auropunctata decreased. The top four countries with the largest areas of overlapping suitable habitat under current climate were Brazil, China, Australia, and Argentina, while under future SSP585 climate scenario, the top four countries were Brazil, China, Indonesia, and Argentina. Some countries, such as Estonia and Finland, will see an overlapping adaptation area under climate change. In conclusion, this study provides insight into controlling the spread and harm of L. humile and W. auropunctata.

9.
Pharm Biol ; 62(1): 233-249, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38393642

RESUMEN

CONTEXT: Podophyllotoxin (PPT) derivatives, used in cancer therapy, require development toward enhanced efficacy and reduced toxicity. OBJECTIVE: This study synthesizes PPT derivatives to assess their anticancer activities. MATERIALS AND METHODS: Compounds E1-E16 antiproliferative activity was tested against four human cancer cell lines (H446, MCF-7, HeLa, A549) and two normal cell lines (L02, BEAS-2B) using the CCK-8 assay. The effects of compound E5 on A549 cell growth were evaluated through molecular docking, in vitro assays (flow cytometry, wound healing, Transwell, colony formation, Western blot), and in vivo tests in female BALB/c nude mice treated with E5 (2 and 4 mg/kg). E5 (4 mg/kg) significantly reduced xenograft tumor growth compared to the DMSO control group. RESULTS: Among the 16 PPT derivatives tested for cytotoxicity, E5 exhibited potent effects against A549 cells (IC50: 0.35 ± 0.13 µM) and exceeded the reference drugs PPT and etoposide to inhibit the growth of xenograft tumours. E5-induced cell cycle arrest in the S and G2/M phases accelerated tubulin depolymerization and triggered apoptosis and mitochondrial depolarization while regulating the expression of apoptosis-related proteins and effectively inhibited cell migration and invasion, suggesting a potential to limit metastasis. Molecular docking showed binding of E5 to tubulin at the colchicine site and to Akt, with a consequent down-regulation of PI3K/Akt pathway proteins. DISCUSSION AND CONCLUSIONS: This research lays the groundwork for advancing cancer treatment through developing and using PPT derivatives. The encouraging results associated with E5 call for extended research and clinical validation, leading to novel and more effective cancer therapies.


Asunto(s)
Antineoplásicos , Podofilotoxina , Ratones , Animales , Humanos , Femenino , Podofilotoxina/farmacología , Podofilotoxina/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacología , Simulación del Acoplamiento Molecular , Ratones Desnudos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular , Línea Celular Tumoral , Apoptosis , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química
10.
J Cell Mol Med ; 27(24): 4069-4079, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37818853

RESUMEN

Moyamoya disease (MMD) is a rare disorder of the cerebrovascular system. It is a steno-occlusive disease that involves angiogenesis and blood-brain barrier (BBB) disruption. Bradykinin (BK), its metabolite des-Arg9-BK, and receptor (B1R) affect angiogenesis and BBB integrity. In this study, we aimed to investigate the changes in BK, B1R and des-Arg9-BK levels in the serum and brain tissues of patients with MMD and explore the underlying mechanism of these markers in MMD. We obtained the serum samples and superficial temporal artery (STA) tissue of patients with MMD from the Department of Neurosurgery of the Jining First People's Hospital. First, we measured BK, des-Arg9-BK and B1R levels in the serum of patients by means of ELISA. Next, we performed immunofluorescence to determine B1R expression in STA tissues. Finally, we determined the underlying mechanism through Western blot, angiogenesis assay, immunofluorescence, transendothelial electrical resistance and transcytosis assays. Our results demonstrated a significant increase in the BK, des-Arg9-BK and B1R levels in the serum of patients with MMD compared to healthy controls. Furthermore, an increase in the B1R expression level was observed in the STA tissues of patients with MMD. BK and des-Arg9-BK could promote the migratory and proliferative abilities of bEnd.3 cells and inhibited the formation of bEnd.3 cell tubes. In vitro BBB model showed that BK and des-Arg9-BK could reduce claudin-5, ZO-1 and occluding expression and BBB disruption. To the best of our knowledge, our results show an increase in BK and B1R levels in the serum and STA tissues of patients with MMD. BK and Des-Arg9-BK could inhibit angiogenesis, promote migratory and proliferative capacities of cells, and disrupt BBB integrity. Therefore, regulating BK, des-Arg9-BK and B1R levels in the serum and the brain could be potential strategies for treating patients with MMD.


Asunto(s)
Enfermedad de Moyamoya , Receptores de Bradiquinina , Animales , Humanos , Ratones , Receptores de Bradiquinina/metabolismo , Bradiquinina/farmacología , Enfermedad de Moyamoya/genética , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo
11.
J Am Chem Soc ; 145(31): 17164-17175, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37440344

RESUMEN

One of the hallmarks of multicomponent metal-organic frameworks (MOFs) is to finely tune their active centers to achieve product selectivity. In particular, obtaining bimetallic MOF hollow structures with precisely tailored redox centers under the same topology is still challenging despite a recent surge of such efforts. Herein, we present an engineering strategy named "cluster labilization" to generate hierarchically porous MOF composites with hollow structures and tunable active centers. By partially replacing zirconium with cerium in the hexanuclear clusters of UiO-66, unevenly distributed yolk-shell structures (YSS) were formed. Through acid treatment or annealing of the YSS precursor, single-shell hollow structures (SSHS) or double-shell hollow structures (DSHS) can be obtained, respectively. The active centers in SSHS and DSHS differ in their species, valence, and spatial locations. More importantly, YSS, SSHS, and DSHS with distinct active centers and microenvironments exhibit tunable catalytic activity, reversed selectivity, and high stability in the tandem reaction and the photoreaction.

12.
FASEB J ; 36(7): e22388, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35639049

RESUMEN

Epidemiological and animal experimental studies suggest an association between gestational cholestasis and intrauterine growth restriction (IUGR). Here, we explored the mechanism through which gestational cholestasis induced IUGR. To establish gestational cholestasis model, pregnant mice were subcutaneously injected with 17α-Ethynylestradiol (E2) on gestational day 13 (GD13)-GD17. Some pregnant mice were intraperitoneally injected with 4µ8C on GD13-GD17. The results found that the apoptosis of trophoblast cells was elevated in placentas of mice with gestational cholestasis and in deoxycholic acid (DCA)-treated human trophoblast cell lines and primary mouse trophoblast cells. Correspondingly, the levels of placental cleaved caspase-3 and Bax were increased, while placental Bcl2 level was decreased in mice with gestational cholestasis and in DCA-treated trophoblast cells. Further analysis found that placental IRE1α pathway was activated in mice with gestational cholestasis and in DCA-treated trophoblast cells. Interestingly, 4µ8C, an IRE1α RNase inhibitor, significantly inhibited caspase-3 activity and apoptosis of trophoblast cells in vivo and in vitro. Importantly, 4µ8C rescued gestational cholestasis-induced placental insufficiency and IUGR. Furthermore, a case-control study demonstrated that placental IRE1α and caspase-3 pathways were activated in cholestasis cases. Our results provide evidence that gestational cholestasis induces placental insufficiency and IUGR may be via triggering IRE1α-mediated apoptosis of placental trophoblast cells.


Asunto(s)
Colestasis Intrahepática , Endorribonucleasas , Insuficiencia Placentaria , Proteínas Serina-Treonina Quinasas , Animales , Apoptosis , Estudios de Casos y Controles , Caspasa 3/metabolismo , Colestasis Intrahepática/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Femenino , Retardo del Crecimiento Fetal/metabolismo , Humanos , Ratones , Placenta/metabolismo , Insuficiencia Placentaria/metabolismo , Embarazo , Complicaciones del Embarazo , Proteínas Serina-Treonina Quinasas/genética , Trofoblastos/metabolismo
13.
Protein Expr Purif ; 208-209: 106293, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37137401

RESUMEN

Porcine circovirus type-2 capsid protein contains a major immunodominant epitope used as a subunit vaccine. Transient expression in mammalian cells is an efficient process for producing recombinant proteins. However, there is still a lack of research on the efficient production of virus capsid proteins in mammalian cells. Here we present a comprehensive study to investigate and optimize the production process of a model "difficult-to-express" virus capsid protein, PCV2 capsid protein in HEK293F transient expression system. The study evaluated the transient expression of PCV2 capsid protein in the mammalian cell line HEK293F and investigated the subcellular distribution by confocal microscopy. In addition, the RNA sequencing (RNA-seq) was used to detect the differential expression of genes after cells transfected with pEGFP-N1-Capsid or empty vectors. The analysis revealed that the PCV2 capsid gene affected a panel of differential genes of HEK293F cells involved in protein folding, stress response, and translation process, such as SHP90ß, GRP78, HSP47, and eIF4A. An integrated strategy of protein engineering combined with VPA addition was applied to promote the expression of PCV2 capsid protein in HEK293F. Moreover, this study significantly increased the production of the engineered PCV2 capsid protein in HEK293F cells, reaching a yield of 8.7 mg/L. Conclusively, this study may provide deep insight for other "difficult-to-express" virus capsid proteins in the mammalian cell system.


Asunto(s)
Proteínas de la Cápside , Circovirus , Porcinos , Animales , Humanos , Circovirus/genética , Células HEK293 , Cápside/metabolismo , Proteínas Recombinantes/genética , Anticuerpos Antivirales , Mamíferos
14.
Cell Mol Life Sci ; 79(3): 154, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35218422

RESUMEN

The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.


Asunto(s)
Cóclea/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Proteoma/análisis , Transcriptoma , Animales , Cromatografía Líquida de Alta Presión , Cóclea/citología , Ontología de Genes , Ratones , MicroARNs/genética , Proteómica/métodos , Espectrometría de Masas en Tándem , Factores de Tiempo
15.
Arch Toxicol ; 97(11): 2929-2941, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37603095

RESUMEN

Maternal lipopolysaccharide (LPS) exposure during pregnancy has been related to IUGR. Here, we explored whether paternal LPS exposure before mating impaired fetal development. All male mice except controls were intraperitoneally injected with LPS every other day for a total of five injections. The next day after the last LPS, male mice were mated with untreated female mice. Interestingly, fetal weight and crown-rump length were reduced, while the incidence of IUGR was increased in paternal LPS exposure group. Additionally, paternal LPS exposure leaded to poor placental development through causing cell proliferation inhibition and apoptosis. Additional experiment demonstrated that the inactivation of placental PI3K/AKT pathway might be involved in paternal LPS-induced cell proliferation inhibition and apoptosis of trophoblast cells. Furthermore, the mRNA and protein levels of mesoderm specific transcript (MEST), a maternally imprinted gene with paternal expression, were significantly decreased in mouse placentas from paternal LPS exposure. Further analysis showed that paternal LPS exposure caused the inactivation of placental PI3K/AKT pathway and then cell proliferation inhibition and apoptosis might be via down-regulating placental MEST. Overall, our results provide evidence that paternal LPS exposure causes poor placental development and subsequently IUGR may be via down-regulating MEST/PI3K/AKT pathway, and then inducing cell proliferation inhibition and apoptosis in placentas.


Asunto(s)
Retardo del Crecimiento Fetal , Lipopolisacáridos , Femenino , Masculino , Embarazo , Animales , Ratones , Humanos , Retardo del Crecimiento Fetal/inducido químicamente , Lipopolisacáridos/toxicidad , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Placenta , Placentación
16.
Cryobiology ; 113: 104786, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863380

RESUMEN

Cryopreservation is widely used for the long-term storage of bacteria. Glycerol is one of the traditional cryoprotectants used widely to prevent cryoinjury during the cryopreservation of bacteria,although it may be toxic to the cells. To overcome these issues, synthetic antifreeze polymers are also used as cryoprotectants to inhibit ice formation. In the study, we compared the performance of various antifreeze synthetic polymers including poly(vinyl alcohol) (PVA), poly(vinylpyrrolidone), poly(ethylene glycol), and dextran with glycerol, among which PVA performed best on decreasing the ice growth rate.The impacts of glycerol, trehalose, combined with PVA on the survival of S. thermophilus were also explored. Notably,. S. thermophilus stored in 100 mg/mL trehalose and 1 mg/mL PVA +50 mg/mL trehalose combo showed significantly enhanced survival when compared with those in traditional cryoprotectant (20% [v/v] glycerol), which achieved the survival percentage of only 41.03 ± 0.09%. The effects of the freezing temperature and crystallinity on the survival of S. thermophilus were elucidated.


Asunto(s)
Criopreservación , Hielo , Criopreservación/métodos , Crioprotectores/farmacología , Congelación , Glicerol/farmacología , Polímeros , Trehalosa/farmacología
17.
Clin Exp Hypertens ; 45(1): 2190529, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36922753

RESUMEN

OBJECTIVES: Hypertension is a chronic disease with multiple causative factors that involve metabolic disturbances and can cause various complications. However, the metabolic characteristics of hypertension at different stages are still unclear. This study aimed to explore the metabolic changes induced by hypertension at different ages. METHODS: Spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were divided into four groups according to age: 5-week-old SHR (n = 6), 5-week-old WKY rats (n = 6), 32-week-old SHR (n = 6), and 32-week-old WKY rats (n = 6). Metabolites were analyzed in primary tissues (serum, heart, lung, kidney, brain, and brown adipose) using a non-targeted metabolomics approach. RESULTS: Thirty-five metabolites and nine related metabolic pathways were identified in 5-week-old SHR, mainly related to the metabolism of amino acids. Fifty-one metabolites and seven related metabolic pathways were identified in the 32-week-old SHR, involving glycolysis, lipid, and amino acid metabolisms. CONCLUSION: This experiment elucidates the metabolic profile of SHR at different ages and provides a basis for predicting and diagnosing hypertension. It also provides a reference for the pathogenesis of hypertension.


Asunto(s)
Aminoácidos , Hipertensión , Animales , Ratas , Aminoácidos/metabolismo , Metabolómica
18.
Clin Exp Hypertens ; 45(1): 2190503, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36924239

RESUMEN

OBJECTIVE: Pulmonary arterial hypertension (PAH) means high blood pressure in the lungs. We aimed to observe the right ventricular size, wall thickness and characteristic functional changes and their associations with PAH in an established model of beagle dogs, and to explore convenient, reliable and sensitive ultrasound indicators for assessing right ventricular remodeling. METHODS: Twenty healthy beagle dogs (8-10 kg) were randomly divided into control group (N-dimethylformamide, n = 10) and dehydromonocrotaline (DHMCT) group (DHMCT, n = 10). N-dimethylformamide or DHMCT was injected through a catheter into the right atrium, and then right heart catheterization, routine echocardiography and two-dimensional speckle tracking imaging (2D-STI) were performed before modeling (0 weeks) and 8, 14 weeks after modeling. Hemodynamic parameters and right ventricular function-related ultrasound data were acquired. At the end of the experiment, the animals were killed and the lung tissues were taken for HE staining. Left and right ventricular walls were separated and weighed respectively, and right ventricular hypertrophy index (RVHI) was measured. The associations of the routine ultrasound data and 2D-STI data at each time point with hemodynamic parameters and RVHI were analyzed. RESULTS: At 0, 8 and 14 weeks, gradual decreases in the right ventricular global longitudinal strain (RVLS) were found in DHMCT group. RVH occurred in DHMCT group, and DHMCT group had a significantly higher RVHI than that of control group (49.83 ± 4.83% vs. 39.80 ± 1.40%, P < .001) and larger pulmonary artery media thickness. RVLS had significant positive correlations with RVSP (r = 0.74, P < .001), mRVP (r = 0.72, P < .001), PASP (r = 0.75, P < .001), mPAP (r = 0.72, P < .001) and PVR (r = 0.68, P < .001). There was a significant positive correlation between RVLS and RVHI (r = 0.74, P < .001). CONCLUSION: The right ventricular function in PAH can be effectively assessed by echocardiography, and RVLS measured by 2D-STI sensitively reflects right ventricular remodeling following PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Disfunción Ventricular Derecha , Perros , Animales , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/etiología , Remodelación Ventricular , Dimetilformamida , Hipertrofia Ventricular Derecha/diagnóstico por imagen , Hipertrofia Ventricular Derecha/etiología , Función Ventricular Derecha
19.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2419-2425, 2023 May.
Artículo en Zh | MEDLINE | ID: mdl-37282871

RESUMEN

This study combined the herbal pair Platycodonis Radix-Curcumae Rhizoma(PR-CR) possessing an inhibitory effect on tumor cell proliferation and metastasis with the active component of traditional Chinese medicine(TCM) silibinin-loaded nanoparticles(NPs) with a regulatory effect on tumor microenvironment based on the joint effect on tumor cells and tumor microenvironment to inhi-bit cell metastasis. The effects of PR-CR on the cellular uptake of NPs and in vitro inhibition against breast cancer proliferation and metastasis were investigated to provide an experimental basis for improving nanoparticle absorption and enhancing therapeutic effects. Silibinin-loaded lipid-polymer nanoparticles(LPNs) were prepared by the nanoprecipitation method and characterized by transmission electron microscopy. The NPs were spherical or quasi-spherical in shape with obvious core-shell structure. The mean particle size was 107.4 nm, Zeta potential was-27.53 mV. The cellular uptake assay was performed by in vitro Caco-2/E12 coculture cell model and confocal laser scanning microscopy(CLSM), and the results indicated that PR-CR could promote the uptake of NPs. Further, in situ intestinal absorption assay by the CLSM vertical scanning approach showed that PR-CR could promote the absorption of NPs in the enterocytes of mice. The inhibitory effect of NPs on the proliferation and migration of 4T1 cells was analyzed using 4T1 breast cancer cells and co-cultured 4T1/WML2 cells, respectively. The results of the CCK8 assay showed that PR-CR-containing NPs could enhance the inhibition against the proliferation of 4T1 breast cancer cells. The wound healing assay indicated that PR-CR-containing NPs enhanced the inhibition against the migration of 4T1 breast cancer cells. This study enriches the research on oral absorption of TCM NPs and also provides a new idea for utilizing the advantages of TCM to inhibit breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Ratones , Animales , Femenino , Silibina/uso terapéutico , Células CACO-2 , Polímeros/química , Nanopartículas/química , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Microambiente Tumoral , Melanoma Cutáneo Maligno
20.
Angew Chem Int Ed Engl ; 62(31): e202303896, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37148158

RESUMEN

Mimicking the active site and the substrate binding cavity of the enzyme to achieve specificity in catalytic reactions is an essential challenge. Herein, porous coordination cages (PCCs) with intrinsic cavities and tunable metal centers have proved the regulation of reactive oxygen species (ROS) generating pathways as evidenced by multiple photo-induced oxidations. Remarkably, in the presence of the Zn4 -µ4 -O center, PCC converted dioxygen molecules from triplet to singlet excitons, whereas the Ni4 -µ4 -O center promoted the efficient dissociation of electrons and holes to conduct electron transfer towards substrates. Accordingly, the distinct ROS generation behavior of PCC-6-Zn and PCC-6-Ni enables the conversion of O2 to 1 O2 and O2 ⋅- , respectively. In contrast, the Co4 -µ4 -O center combined the 1 O2 and O2 ⋅- together to generate carbonyl radicals, which in turn reacted with the oxygen molecules. Harnessing the three oxygen activation pathways, PCC-6-M (M=Zn/Ni/Co) display specific catalytic activities in thioanisole oxidation (PCC-6-Zn), benzylamine coupling (PCC-6-Ni), and aldehyde autoxidation (PCC-6-Co). This work not only provides fundamental insights into the regulation of ROS generation by a supramolecular catalyst but also demonstrates a rare example of achieving reaction specificity through mimicking natural enzymes by PCCs.


Asunto(s)
Metales , Oxígeno , Especies Reactivas de Oxígeno , Metales/química , Oxidación-Reducción , Oxígeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA