Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Respir Crit Care Med ; 210(8): 1002-1016, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38536165

RESUMEN

Rationale: Chronic inflammation plays an important role in alveolar tissue damage in emphysema, but the underlying immune alterations and cellular interactions are incompletely understood. Objectives: To explore disease-specific pulmonary immune cell alterations and cellular interactions in emphysema. Methods: We used single-cell mass cytometry (CyTOF) to compare the immune compartment in alveolar tissue from 15 patients with severe emphysema and 5 control subjects. Imaging mass cytometry (IMC) was applied to identify altered cell-cell interactions in alveolar tissue from patients with emphysema (n = 12) compared with control subjects (n = 8). Measurements and Main Results: We observed higher percentages of central memory CD4 T cells in combination with lower proportions of effector memory CD4 T cells in emphysema. In addition, proportions of cytotoxic central memory CD8 T cells and CD127+CD27+CD69- T cells were higher in emphysema, the latter potentially reflecting an influx of circulating lymphocytes into the lungs. Central memory CD8 T cells, isolated from alveolar tissue from patients with emphysema, exhibited an IFN-γ response upon anti-CD3 and anti-CD28 activation. Proportions of CD1c+ dendritic cells, expressing migratory and costimulatory markers, were higher in emphysema. Importantly, IMC enabled us to visualize increased spatial colocalization of CD1c+ dendritic cells and CD8 T cells in emphysema in situ. Conclusions: Using CyTOF, we characterized the alterations of the immune cell signature in alveolar tissue from patients with chronic obstructive pulmonary disease stage III or IV emphysema versus control lung tissue. These data contribute to a better understanding of the pathogenesis of emphysema and highlight the feasibility of interrogating the immune cell signature using CyTOF and IMC in human lung tissue. Clinical trial registered with www.clinicaltrials.gov (NCT04918706).


Asunto(s)
Enfisema Pulmonar , Humanos , Masculino , Femenino , Anciano , Enfisema Pulmonar/inmunología , Persona de Mediana Edad , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Citometría de Flujo/métodos , Estudios de Casos y Controles
2.
Planta ; 259(6): 146, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713242

RESUMEN

MAIN CONCLUSION: The combined transcriptome outcome provides an important clue to the regulatory cascade centering on lncRNA GARR2 and CPS2 gene in GA response. Long non-coding RNAs (lncRNAs) serve as regulatory components in transcriptional hierarchy governing multiple aspects of biological processes. Dissecting regulatory mechanisms underpinning tetracyclic diterpenoid gibberellin (GA) cascade holds both theoretical and applied significance. However, roles of lncRNAs in transcriptional modulation of GA pathway remain largely elusive. Gypsy retrotransposon-derived GIBBERELLIN RESPONSIVE lncRNA2 (GARR2) has been reported as GA-responsive maize lncRNA. Here a novel GARR2-edited line garr2-1 was identified, characteristic of GA-induced phenotype of increased seedling height and elongated leaf sheath. Transcriptome analysis indicated that transcriptional abundance of five genes [ent-copalyl diphosphate synthase2 (CPS2), ent-kaurene synthase4 (KS4), ent-kaurene synthase6 (KS6), ent-kaurene oxidase2 (KO2), and ent-kaurenoic acid oxidase1/Dwarf3 (KAO1/D3)] was elevated in garr2-1 for early steps of GA biosynthesis. Five GA biosynthetic genes as hub regulators were interlaced to shape regulatory network of GA response. Different transcriptome resources were integrated to discover common differentially expressed genes (DEGs) in the independent GARR2-edited lines GARR2KO and garr2-1. A total of 320 common DEGs were retrieved. These common DEGs were enriched in diterpenoid biosynthetic pathway. Integrative transcriptome analysis revealed the common CPS2 encoding the CPS enzyme that catalyzes the conversion of the precursor trans-geranylgeranyl diphosphate to ent-copalyl diphosphate. The up-regulated CPS2 supported the GA-induced phenotype of slender seedlings observed in the independent GARR2-edited lines GARR2KO and garr2-1. Our integrative transcriptome analysis uncovers common components of the GA pathway regulated by lncRNA GARR2. These common components, especially for the GA biosynthetic gene CPS2, provide a valuable resource for further delineating the underlying mechanisms of lncRNA GARR2 in GA response.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Giberelinas , ARN Largo no Codificante , Zea mays , Zea mays/genética , Zea mays/metabolismo , Giberelinas/metabolismo , ARN Largo no Codificante/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Reguladores del Crecimiento de las Plantas/metabolismo
3.
Cancer Cell Int ; 18: 62, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713245

RESUMEN

BACKGROUND: Despite recent advances, multiple myeloma (MM) remains incurable. However, the appearance of allogeneic stem cell transplantation (allo-SCT) through graft-versus-myeloma effect provides a potential way to cure MM to some degree. This systematic review aimed to evaluate the outcome of patients receiving allo-SCT and identified a series of prognostic factors that may affect the outcome of allo-SCT. PATIENTS/METHODS: We systematically searched PubMed, Embase, and the Cochrane Library from 2007.01.01 to 2017.05.03 using the keywords 'allogeneic' and 'myeloma'. RESULTS: A total of 61 clinical trials involving 8698 adult patients were included. The pooled estimates (95% CI) for overall survival (OS) at 1, 2, 3 and 5 years were 70 (95% CI 56-84%), 62 (95% CI 53-71%), 52 (95% CI 44-61%), and 46 (95% CI 40-52%), respectively; for progression-free survival were 51 (95% CI 38-64%), 40 (95% CI 32-48%), 34 (95% CI 27-41%), and 27 (95% CI 23-31%), respectively; and for treatment-related mortality (TRM) were 18 (95% CI 14-21%), 21 (95% CI 17-25%), 20 (95% CI 13-26%), and 27 (95% CI 21-33%), respectively. Additionally, the pooled 100-day TRM was 12 (95% CI 5-18%). The incidences of grades II-IV acute graft-versus-host disease (GVHD) and chronic GVHD were 34 (95% CI 30-37%) and 51 (95% CI 46-56%), respectively. The incidences of relapse rate (RR) and death rate were 50 (95% CI 45-55%) and 51 (95% CI 45-57%), respectively. Importantly, disease progression was the most major cause of death (48%), followed by TRM (44%). The results failed to show an apparent benefit of allo-SCT for standard risk patients, compared with tandem auto-SCT. In contrast, all 14 trials in our study showed that patients with high cytogenetic risk after allo-SCT had similar OS and PFS compared to those with standard risk, suggesting that allo-SCT may overcome the adverse prognosis of high cytogenetic risk. CONCLUSION: Due to the lack of consistent survival benefit, allo-SCT should not be considered as a standard of care for newly diagnosed and relapsed standard-risk MM patients. However, for patients with high-risk MM who have a poor long-term prognosis, allo-SCT may be a strong consideration in their initial course of therapy or in first relapse after chemotherapy, when the risk of disease progression may outweigh the transplant-related risks. A large number of prospective randomized controlled trials were needed to prove the benefits of these therapeutic options.

4.
J Glob Antimicrob Resist ; 36: 293-300, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38266959

RESUMEN

OBJECTIVES: The emergence of the florfenicol resistance gene fexA in Campylobacter poses a serious threat to public health, but the extent of the spread of fexA in Campylobacter from various hosts has not been well understood. This study aimed to investigate the fexA in Campylobacter isolates from different hosts. METHODS: PCR was used to identify fexA-positive Campylobacter from different hosts during 2008-2019 in China, and the fexA-positive isolates were characterized by susceptibility tests, whole-genome sequencing, and natural transformation. RESULTS: A total of 69 (2.54%, 69/2721) fexA-positive Campylobacter were identified, and the fexA-positive isolates increased remarkably (0.42%-16.90%) since it was first detected in 2010. By source, the 69 isolates were obtained from chickens (3.57%, 57/1595), geese (3.43%, 7/204), ducks (1.02%, 2/197), and environments (2.86%, 3/105); the fexA-positive isolates were not isolated in humans and pigs. In addition to fexA, these isolates also carried other antimicrobial resistance genes and exhibited multidrug resistance. Whole-genome sequencing analysis showed the fexA gene can disseminate clonally or horizontally via either multidrug resistance genomic islands or insertion sequences among the Campylobacter. The genetic structure IS1216-∆ISEfa11-hp-fexA-NAD(P)H-∆ISEfa11-IS1216 was conserved and widespread in the Campylobacter of various origins, and the IS1216 can form fexA-carrying circular intermediates, emphasizing that IS1216 plays an important role in the spread of fexA in Campylobacter. CONCLUSIONS: This study indicates the wide spread of fexA-positive Campylobacter in poultry and environments. Because multidrug resistance genomic islands and IS1216 can facilitate the transmission of fexA, systematic surveillance should be implemented to prevent the spread of fexA to humans.


Asunto(s)
Campylobacter , Animales , Humanos , Porcinos , Campylobacter/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Pollos , Aves de Corral
5.
JCI Insight ; 9(5)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38341270

RESUMEN

Tregs can facilitate transplant tolerance and attenuate autoimmune and inflammatory diseases. Therefore, it is clinically relevant to stimulate Treg expansion and function in vivo and to create therapeutic Treg products in vitro. We report that TNF receptor 2 (TNFR2) is a unique costimulus for naive, thymus-derived Tregs (tTregs) from human blood that promotes their differentiation into nonlymphoid tissue-resident (NLT-resident) effector Tregs, without Th-like polarization. In contrast, CD28 costimulation maintains a lymphoid tissue-resident (LT-resident) Treg phenotype. We base this conclusion on transcriptome and proteome analysis of TNFR2- and CD28-costimulated CD4+ tTregs and conventional T cells (Tconvs), followed by bioinformatic comparison with published transcriptomic Treg signatures from NLT and LT in health and disease, including autoimmunity and cancer. These analyses illuminate that TNFR2 costimulation promoted tTreg capacity for survival, migration, immunosuppression, and tissue regeneration. Functional studies confirmed improved migratory ability of TNFR2-costimulated tTregs. Flow cytometry validated the presence of the TNFR2-driven tTreg signature in effector/memory Tregs from the human placenta, as opposed to blood. Thus, TNFR2 can be exploited as a driver of NLT-resident tTreg differentiation for adoptive cell therapy or antibody-based immunomodulation in human disease.


Asunto(s)
Receptores Tipo II del Factor de Necrosis Tumoral , Linfocitos T Reguladores , Humanos , Antígenos CD28 , Linfocitos , Timo
6.
Inflamm Bowel Dis ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776553

RESUMEN

BACKGROUND: Perianal fistulas are a debilitating complication of Crohn's disease (CD). Due to unknown reasons, CD-associated fistulas are in general more difficult to treat than cryptoglandular fistulas (non-CD-associated). Understanding the immune cell landscape is a first step towards the development of more effective therapies for CD-associated fistulas. In this work, we characterized the composition and spatial localization of disease-associated immune cells in both types of perianal fistulas by high-dimensional analyses. METHODS: We applied single-cell mass cytometry (scMC), spectral flow cytometry (SFC), and imaging mass cytometry (IMC) to profile the immune compartment in CD-associated perianal fistulas and cryptoglandular fistulas. An exploratory cohort (CD fistula, n = 10; non-CD fistula, n = 5) was analyzed by scMC to unravel disease-associated immune cell types. SFC was performed on a second fistula cohort (CD, n = 10; non-CD, n = 11) to comprehensively phenotype disease-associated T helper (Th) cells. IMC was used on a third cohort (CD, n = 5) to investigate the spatial distribution/interaction of relevant immune cell subsets. RESULTS: Our analyses revealed that activated HLA-DR+CD38+ effector CD4+ T cells with a Th1/17 phenotype were significantly enriched in CD-associated compared with cryptoglandular fistulas. These cells, displaying features of proliferation, regulation, and differentiation, were also present in blood, and colocalized with other CD4+ T cells, CCR6+ B cells, and macrophages in the fistula tracts. CONCLUSIONS: Overall, proliferating activated HLA-DR+CD38+ effector Th1/17 cells distinguish CD-associated from cryptoglandular perianal fistulas and are a promising biomarker in blood to discriminate between these 2 fistula types. Targeting HLA-DR and CD38-expressing CD4+ T cells may offer a potential new therapeutic strategy for CD-related fistulas.


We applied high-dimensional analyses to profile the immune compartment in CD-associated and cryptoglandular perianal fistulas. Data analysis revealed activated HLA-DR+CD38+ effector Th1/17 cells as distinctly increased in CD-associated fistulas, suggesting a potential novel therapeutic target.

7.
Nat Commun ; 14(1): 1318, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899020

RESUMEN

The intestine represents the largest immune compartment in the human body, yet its development and organisation during human foetal development is largely unknown. Here we show the immune subset composition of this organ during development, by longitudinal spectral flow cytometry analysis of human foetal intestinal samples between 14 and 22 weeks of gestation. At 14 weeks, the foetal intestine is mainly populated by myeloid cells and three distinct CD3-CD7+ ILC, followed by rapid appearance of adaptive CD4+, CD8+ T and B cell subsets. Imaging mass cytometry identifies lymphoid follicles from week 16 onwards in a villus-like structure covered by epithelium and confirms the presence of Ki-67+ cells in situ within all CD3-CD7+ ILC, T, B and myeloid cell subsets. Foetal intestinal lymphoid subsets are capable of spontaneous proliferation in vitro. IL-7 mRNA is detected within both the lamina propria and the epithelium and IL-7 enhances proliferation of several subsets in vitro. Overall, these observations demonstrate the presence of immune subset-committed cells capable of local proliferation in the developing human foetal intestine, likely contributing to the development and growth of organized immune structures throughout most of the 2nd trimester, which might influence microbial colonization upon birth.


Asunto(s)
Interleucina-7 , Intestinos , Embarazo , Femenino , Humanos , Segundo Trimestre del Embarazo , Feto , Linfocitos , Mucosa Intestinal , Subgrupos de Linfocitos T
8.
Leukemia ; 35(12): 3509-3525, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34007044

RESUMEN

Bone marrow (BM) angiogenesis significantly influences disease progression in multiple myeloma (MM) patients and correlates with adverse prognosis. The present study shows a statistically significant correlation of the AP-1 family member JunB with VEGF, VEGFB, and IGF1 expression levels in MM. In contrast to the angiogenic master regulator Hif-1α, JunB protein levels were independent of hypoxia. Results in tumor-cell models that allow the induction of JunB knockdown or JunB activation, respectively, corroborated the functional role of JunB in the production and secretion of these angiogenic factors (AFs). Consequently, conditioned media derived from MM cells after JunB knockdown or JunB activation either inhibited or stimulated in vitro angiogenesis. The impact of JunB on MM BM angiogenesis was finally confirmed in a dynamic 3D model of the BM microenvironment, a xenograft mouse model as well as in patient-derived BM sections. In summary, in continuation of our previous study (Fan et al., 2017), the present report reveals for the first time that JunB is not only a mediator of MM cell survival, proliferation, and drug resistance, but also a promoter of AF transcription and consequently of MM BM angiogenesis. Our results thereby underscore worldwide efforts to target AP-1 transcription factors such as JunB as a promising strategy in MM therapy.


Asunto(s)
Médula Ósea/irrigación sanguínea , Mieloma Múltiple/irrigación sanguínea , Factores de Transcripción/genética , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Cultivo Primario de Células , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA