Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 35(38): e2302777, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37310868

RESUMEN

Grain-boundary engineering is an effective strategy to tune the thermal conductivity of materials, leading to improved performance in thermoelectric, thermal-barrier coatings, and thermal management applications. Despite the central importance to thermal transport, a clear understanding of how grain boundaries modulate the microscale heat flow is missing, owing to the scarcity of local investigations. Here, thermal imaging of individual grain boundaries is demonstrated in thermoelectric SnTe via spatially resolved frequency-domain thermoreflectance. Measurements with microscale resolution reveal local suppressions in thermal conductivity at grain boundaries. Also, the grain-boundary thermal resistance - extracted by employing a Gibbs excess approach - is found to be correlated with the grain-boundary misorientation angle. Extracting thermal properties, including thermal boundary resistances, from microscale imaging can provide comprehensive understanding of how microstructure affects heat transport, crucially impacting the materials design of high-performance thermal-management and energy-conversion devices.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36753465

RESUMEN

Two-dimensional (2D) semiconductors exhibit unique physical properties at the limit of a few atomic layers that are desirable for optoelectronic, spintronic, and electronic applications. Some of these materials require ambient encapsulation to preserve their properties from environmental degradation. While encapsulating 2D semiconductors is essential to device functionality, they also impact heat management due to the reduced thermal conductivity of the 2D material. There are limited experimental reports on in-plane thermal conductivity measurements in encapsulated 2D semiconductors. These measurements are particularly challenging in ultrathin films with a lower thermal conductivity than graphene since it may be difficult to separate the thermal effects of the sample from the encapsulating layers. To address this challenge, we integrated the frequency domain thermoreflectance (FDTR) and optothermal Raman spectroscopy (OTRS) techniques in the same experimental platform. First, we use the FDTR technique to characterize the cross-plane thermal conductivity and thermal boundary conductance. Next, we measure the in-plane thermal conductivity by model-based analysis of the OTRS measurements, using the cross-plane properties obtained from the FDTR measurements as input parameters. We provide experimental data for the first time on the thickness-dependent in-plane thermal conductivity of ultrathin MoS2 nanofilms encapsulated by alumina (Al2O3) and silica (SiO2) thin films. The measured thermal conductivity increased from 26.0 ± 10.0 W m-1 K-1 for monolayer MoS2 to 39.8 ± 10.8 W m-1 K-1 for the six-layer films. We also show that the thickness-dependent cross-plane thermal boundary conductance of the Al2O3/MoS2/SiO2 interface is limited by the low thermal conductance (18.5 MW m-2 K-1) of the MoS2/SiO2 interface, which has important implications on heat management in SiO2-supported and encased MoS2 devices. The measurement methods can be generalized to other 2D materials to study their anisotropic thermal properties.

3.
ACS Nano ; 15(6): 10659-10667, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34101433

RESUMEN

Two-dimensional transitional metal halides have recently attracted significant attention due to their thickness-dependent and electrostatically tunable magnetic properties. However, this class of materials is highly reactive chemically, which leads to irreversible degradation and catastrophic dissolution within seconds in ambient conditions, severely limiting subsequent characterization, processing, and applications. Here, we impart long-term ambient stability to the prototypical transition metal halide CrI3 by assembling a noncovalent organic buffer layer, perylenetetracarboxylic dianhydride (PTCDA), which templates subsequent atomic layer deposition (ALD) of alumina. X-ray photoelectron spectroscopy demonstrates the necessity of the noncovalent organic buffer layer since the CrI3 undergoes deleterious surface reactions with the ALD precursors in the absence of PTCDA. This organic-inorganic encapsulation scheme preserves the long-range magnetic ordering in CrI3 down to the monolayer limit as confirmed by magneto-optical Kerr effect measurements. Furthermore, we demonstrate field-effect transistors, photodetectors, and optothermal measurements of CrI3 thermal conductivity in ambient conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA