Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(2): 337-348, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36577930

RESUMEN

Our previous study using systems vaccinology identified an association between the sterol regulatory binding protein (SREBP) pathway and humoral immune response to vaccination in humans. To investigate the role of SREBP signaling in modulating immune responses, we generated mice with B cell- or CD11c+ antigen-presenting cell (APC)-specific deletion of SCAP, an essential regulator of SREBP signaling. Ablation of SCAP in CD11c+ APCs had no effect on immune responses. In contrast, SREBP signaling in B cells was critical for antibody responses, as well as the generation of germinal centers,memory B cells and bone marrow plasma cells. SREBP signaling was required for metabolic reprogramming in activated B cells. Upon mitogen stimulation, SCAP-deficient B cells could not proliferate and had decreased lipid rafts. Deletion of SCAP in germinal center B cells using AID-Cre decreased lipid raft content and cell cycle progression. These studies provide mechanistic insights coupling sterol metabolism with the quality and longevity of humoral immunity.


Asunto(s)
Proteínas Portadoras , Linfoma de Células B , Esteroles , Animales , Humanos , Ratones , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Esteroles/metabolismo , Linfoma de Células B/metabolismo
2.
Nature ; 579(7798): 291-296, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103174

RESUMEN

The DNA-dependent protein kinase (DNA-PK), which comprises the KU heterodimer and a catalytic subunit (DNA-PKcs), is a classical non-homologous end-joining (cNHEJ) factor1. KU binds to DNA ends, initiates cNHEJ, and recruits and activates DNA-PKcs. KU also binds to RNA, but the relevance of this interaction in mammals is unclear. Here we use mouse models to show that DNA-PK has an unexpected role in the biogenesis of ribosomal RNA (rRNA) and in haematopoiesis. The expression of kinase-dead DNA-PKcs abrogates cNHEJ2. However, most mice that both expressed kinase-dead DNA-PKcs and lacked the tumour suppressor TP53 developed myeloid disease, whereas all other previously characterized mice deficient in both cNHEJ and TP53 expression succumbed to pro-B cell lymphoma3. DNA-PK autophosphorylates DNA-PKcs, which is its best characterized substrate. Blocking the phosphorylation of DNA-PKcs at the T2609 cluster, but not the S2056 cluster, led to KU-dependent defects in 18S rRNA processing, compromised global protein synthesis in haematopoietic cells and caused bone marrow failure in mice. KU drives the assembly of DNA-PKcs on a wide range of cellular RNAs, including the U3 small nucleolar RNA, which is essential for processing of 18S rRNA4. U3 activates purified DNA-PK and triggers phosphorylation of DNA-PKcs at T2609. DNA-PK, but not other cNHEJ factors, resides in nucleoli in an rRNA-dependent manner and is co-purified with the small subunit processome. Together our data show that DNA-PK has RNA-dependent, cNHEJ-independent functions during ribosome biogenesis that require the kinase activity of DNA-PKcs and its phosphorylation at the T2609 cluster.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Hematopoyesis/genética , Autoantígeno Ku/metabolismo , Linfoma/enzimología , Linfoma/fisiopatología , ARN Ribosómico 18S/metabolismo , Proteínas de Unión al Calcio/genética , Dominio Catalítico/fisiología , Reparación del ADN/genética , Activación Enzimática/genética , Células HeLa , Humanos , Linfoma/genética , Modelos Animales , Mutación , Fosforilación , Unión Proteica , Biosíntesis de Proteínas/genética , ARN Ribosómico 18S/genética , ARN Nucleolar Pequeño/metabolismo
3.
Mol Cell ; 72(1): 127-139.e8, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30244837

RESUMEN

The BRCA1 tumor suppressor preserves genome integrity through both homology-directed repair (HDR) and stalled fork protection (SFP). In vivo, BRCA1 exists as a heterodimer with the BARD1 tumor suppressor, and both proteins harbor a phosphate-binding BRCT domain. Here, we compare mice with mutations that ablate BRCT phospho-recognition by Bard1 (Bard1S563F and Bard1K607A) or Brca1 (Brca1S1598F). Brca1S1598F abrogates both HDR and SFP, suggesting that both pathways are likely impaired in most BRCA1 mutant tumors. Although not affecting HDR, the Bard1 mutations ablate poly(ADP-ribose)-dependent recruitment of BRCA1/BARD1 to stalled replication forks, resulting in fork degradation and chromosome instability. Nonetheless, Bard1S563F/S563F and Bard1K607A/K607A mice, unlike Brca1S1598F/S1598F mice, are not tumor prone, indicating that HDR alone is sufficient to suppress tumor formation in the absence of SFP. Nevertheless, because SFP, unlike HDR, is also impaired in heterozygous Brca1/Bard1 mutant cells, SFP and HDR may contribute to distinct stages of tumorigenesis in BRCA1/BARD1 mutation carriers.


Asunto(s)
Reparación del ADN/genética , Reparación del ADN por Recombinación/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Proteína BRCA1 , Inestabilidad Cromosómica/genética , Roturas del ADN de Doble Cadena , Femenino , Humanos , Ratones , Mutación , Dominios Proteicos/genética
4.
Proc Natl Acad Sci U S A ; 120(25): e2221894120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307443

RESUMEN

The nonhomologous end-joining (NHEJ) pathway is a major DNA double-strand break repair pathway in mammals and is essential for lymphocyte development. Ku70 and Ku80 heterodimer (KU) initiates NHEJ, thereby recruiting and activating the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). While DNA-PKcs deletion only moderately impairs end-ligation, the expression of kinase-dead DNA-PKcs completely abrogates NHEJ. Active DNA-PK phosphorylates DNA-PKcs at two clusters-PQR around S2056 (S2053 in mouse) and ABCDE around T2609. Alanine substitution at the S2056 cluster moderately compromises end-ligation on plasmid-based assays. But, mice carrying alanine substitution at all five serine residues within the S2056 cluster (DNA-PKcsPQR/PQR) display no defect in lymphocyte development, leaving the physiological significance of S2056 cluster phosphorylation elusive. Xlf is a nonessential NHEJ factor. Xlf -/- mice have substantial peripheral lymphocytes that are completely abolished by the loss of DNA-PKcs, the related ATM kinases, other chromatin-associated DNA damage response factors (e.g., 53BP1, MDC1, H2AX, and MRI), or RAG2-C-terminal regions, suggesting functional redundancy. While ATM inhibition does not further compromise end-ligation, here we show that in XLF-deficient background, DNA-PKcs S2056 cluster phosphorylation is critical for normal lymphocyte development. Chromosomal V(D)J recombination from DNA-PKcsPQR/PQRXlf -/- B cells is efficient but often has large deletions that jeopardize lymphocyte development. Class-switch recombination junctions from DNA-PKcsPQR/PQRXlf -/- mice are less efficient and the residual junctions display decreased fidelity and increased deletion. These findings establish a role for DNA-PKcs S2056 cluster phosphorylation in physiological chromosomal NHEJ, implying that S2056 cluster phosphorylation contributes to the synergy between XLF and DNA-PKcs in end-ligation.


Asunto(s)
Proteínas Quinasas , Procesamiento Proteico-Postraduccional , Animales , Ratones , Fosforilación , Alanina , Linfocitos B , Proteína Quinasa Activada por ADN , Mamíferos , Proteínas de Unión al ADN
5.
Proc Natl Acad Sci U S A ; 120(31): e2301972120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487079

RESUMEN

PARP1 (poly-ADP ribose polymerase 1) is recruited and activated by DNA strand breaks, catalyzing the generation of poly-ADP-ribose (PAR) chains from NAD+. PAR relaxes chromatin and recruits other DNA repair factors, including XRCC1 and DNA Ligase 3, to maintain genomic stability. Here we show that, in contrast to the normal development of Parp1-null mice, heterozygous expression of catalytically inactive Parp1 (E988A, Parp1+/A) acts in a dominant-negative manner to disrupt murine embryogenesis. As such, all the surviving F1 Parp1+/A mice are chimeras with mixed Parp1+/AN (neoR retention) cells that act similarly to Parp1+/-. Pure F2 Parp1+/A embryos were found at Mendelian ratios at the E3.5 blastocyst stage but died before E9.5. Compared to Parp1-/- cells, genotype and expression-validated pure Parp1+/A cells retain significant ADP-ribosylation and PARylation activities but accumulate markedly higher levels of sister chromatid exchange and mitotic bridges. Despite proficiency for homologous recombination and nonhomologous end-joining measured by reporter assays and supported by normal lymphocyte and germ cell development, Parp1+/A cells are hypersensitive to base damages, radiation, and Topoisomerase I and II inhibition. The sensitivity of Parp1+/A cells to base damages and Topo inhibitors exceed Parp1-/- controls. The findings show that the enzymatically inactive PARP1 dominant negatively blocks DNA repair in selective pathways beyond wild-type PARP1 and establishes a crucial physiological difference between PARP1 inactivation vs. deletion. As a result, the expression of enzymatically inactive PARP1 from one allele is sufficient to abrogate murine embryonic development, providing a mechanism for the on-target side effect of PARP inhibitors used for cancer therapy.


Asunto(s)
ADP-Ribosilación , Inestabilidad Genómica , Femenino , Embarazo , Animales , Ratones , Causalidad , Alelos , Genotipo
6.
Mol Cell ; 65(1): 91-104, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27939942

RESUMEN

Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Proteínas Nucleares/metabolismo , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/genética , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/enzimología , Genotipo , Células HEK293 , Humanos , Mutación , Proteínas Nucleares/genética , Estrés Oxidativo , Fenotipo , Fosforilación , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección
7.
Nucleic Acids Res ; 50(7): 3958-3973, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35349716

RESUMEN

Dual-inhibitors of PARP1 and PARP2 are promising anti-cancer drugs. In addition to blocking PARP1&2 enzymatic activity, PARP inhibitors also extend the lifetime of DNA damage-induced PARP1&2 foci, termed trapping. Trapping is important for the therapeutic effects of PARP inhibitors. Using live-cell imaging, we found that PARP inhibitors cause persistent PARP2 foci by switching the mode of PARP2 recruitment from a predominantly PARP1- and PAR-dependent rapid exchange to a WGR domain-mediated stalling of PARP2 on DNA. Specifically, PARP1-deletion markedly reduces but does not abolish PARP2 foci. The residual PARP2 foci in PARP1-deficient cells are DNA-dependent and abrogated by the R140A mutation in the WGR domain. Yet, PARP2-R140A forms normal foci in PARP1-proficient cells. In PARP1-deficient cells, PARP inhibitors - niraparib, talazoparib, and, to a lesser extent, olaparib - enhance PARP2 foci by preventing PARP2 exchange. This trapping of PARP2 is independent of auto-PARylation and is abolished by the R140A mutation in the WGR domain and the H415A mutation in the catalytic domain. Taken together, we found that PARP inhibitors trap PARP2 by physically stalling PARP2 on DNA via the WGR-DNA interaction while suppressing the PARP1- and PAR-dependent rapid exchange of PARP2.


Asunto(s)
Daño del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas , ADN/metabolismo , Reparación del ADN , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
8.
Mol Cell ; 58(1): 172-85, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25818648

RESUMEN

Nonhomologous end-joining (NHEJ) is a major DNA double-strand break repair pathway that is conserved in eukaryotes. In vertebrates, NHEJ further acquires end-processing capacities (e.g., hairpin opening) in addition to direct end-ligation. The catalytic subunit of DNA-PK (DNA-PKcs) is a vertebrate-specific NHEJ factor that can be autophosphorylated or transphosphorylated by ATM kinase. Using a mouse model expressing a kinase-dead (KD) DNA-PKcs protein, we show that ATM-mediated transphosphorylation of DNA-PKcs regulates end-processing at the level of Artemis recruitment, while strict autophosphorylation of DNA-PKcs is necessary to relieve the physical blockage on end-ligation imposed by the DNA-PKcs protein itself. Accordingly, DNA-PKcs(KD/KD) mice and cells show severe end-ligation defects and p53- and Ku-dependent embryonic lethality, but open hairpin-sealed ends normally in the presence of ATM kinase activity. Together, our findings identify DNA-PKcs as the molecular switch that coordinates end-processing and end-ligation at the DNA ends through differential phosphorylations.


Asunto(s)
Linfocitos B/metabolismo , Reparación del ADN por Unión de Extremidades/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Proteínas Nucleares/genética , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Linfocitos B/citología , Línea Celular , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Femenino , Regulación de la Expresión Génica , Autoantígeno Ku , Masculino , Ratones , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Fosforilación , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Neurochem Res ; 47(7): 2052-2063, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35469367

RESUMEN

Post-stroke depression (PSD) is the most common mental disorder in stroke survivors. However, its specific pathophysiology remains largely unknown. Previous studies suggested a role of hippocampus in PSD. Therefore, we conducted this study to investigate the lipid metabolic signatures in hippocampus of PSD rats. Here, the liquid chromatography mass spectrometry was used to identify the lipid metabolic signatures in the hippocampus of PSD, control and stroke rats. Then, correlations between behavior indices and differential lipid metabolites in PSD rats were explored. Pathway and enrichment analysis were further conducted to uncover the crucial metabolic pathways related to PSD. Finally, we found that the lipid metabolic phenotype in hippocampus of PSD rats was substantially different from that in control and stroke rats, and identified 50 key lipid metabolites that were significantly decreased in PSD rats. These differential metabolites were mainly involved in glycerophospholipid metabolism. Meanwhile, the sucrose preference and immobility time were found to be significantly positively and negatively, respectively, correlated with glycerophospholipid metabolites. The pathway and enrichment analysis showed that the glycerophospholipid metabolism, especially cardiolipin metabolism, was significantly disturbed in PSD rats. These results suggested that the down-regulated glycerophospholipids in hippocampus, especially cardiolipin, might participate in the pathophysiology of PSD. Our findings would be helpful for future exploring the pathophysiology of PSD.


Asunto(s)
Depresión , Accidente Cerebrovascular , Animales , Cardiolipinas/metabolismo , Depresión/etiología , Depresión/metabolismo , Hipocampo/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Ratas , Accidente Cerebrovascular/metabolismo
10.
Neurochem Res ; 46(9): 2262-2275, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34075523

RESUMEN

Brain inflammation induced by ischemic stroke is an important cause of secondary brain injury. The nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and NLRP3 inflammasome signaling are believed to drive the progression of brain inflammation. Spermatogenesis-associated protein2 (SPATA2) functions as a partner protein that recruits CYLD, a negative regulator of NF-κB signaling, to signaling complexes. However, the role of SPATA2 in the central nervous system remains unclear and whether it is involved in regulating inflammatory responses remains controversial. Rats were subjected to transient middle cerebral artery occlusion followed by reperfusion (tMCAO/R) surgery. The expression and localization of SPATA2 in the brain were investigated. The lentivirus-mediated shRNA was employed to inhibit SPATA2 expression. The inflammatory responses and outcomes of Spata2 knockdown were investigated. SPATA2 was co-localized with CYLD in neurons. SPATA2 expression was reduced in tMCAO/R rats. Spata2 knockdown resulted in increased microglia, increased expression of Tnfa, Il-1ß, and Il-18, decreased Garcia score, and increased infarct volume. Spata2 knockdown resulted in the activation of P38MAPK and NLRP3 inflammasome and the increased activation of NF-κB signaling. These results suggest that SPATA2 plays a protective role against brain inflammation induced by ischemia/reperfusion injury. Therefore, SPATA2 could be a potential therapeutic target for treating ischemic stroke.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Daño por Reperfusión/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Técnicas de Silenciamiento del Gen , Infarto de la Arteria Cerebral Media/patología , Inflamación/metabolismo , Inflamación/patología , Masculino , Microglía/metabolismo , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
J Immunol ; 203(1): 178-187, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31101667

RESUMEN

The classical nonhomologous end-joining (cNHEJ) pathway is a major DNA double-strand break repair pathway in mammalian cells and is required for lymphocyte development and maturation. The DNA-dependent protein kinase (DNA-PK) is a cNHEJ factor that encompasses the Ku70-Ku80 (KU) heterodimer and the large DNA-PK catalytic subunit (DNA-PKcs). In mouse models, loss of DNA-PKcs (DNA-PKcs-/- ) abrogates end processing (e.g., hairpin opening), but not end-ligation, whereas expression of the kinase-dead DNA-PKcs protein (DNA-PKcsKD/KD ) abrogates end-ligation, suggesting a kinase-dependent structural function of DNA-PKcs during cNHEJ. Lymphocyte development is abolished in DNA-PKcs-/- and DNA-PKcsKD/KD mice because of the requirement for both hairpin opening and end-ligation during V(D)J recombination. DNA-PKcs itself is the best-characterized substrate of DNA-PK. The S2056 cluster is the best-characterized autophosphorylation site in human DNA-PKcs. In this study, we show that radiation can induce phosphorylation of murine DNA-PKcs at the corresponding S2053. We also generated knockin mouse models with alanine- (DNA-PKcsPQR) or phospho-mimetic aspartate (DNA-PKcsSD) substitutions at the S2053 cluster. Despite moderate radiation sensitivity in the DNA-PKcsPQR/PQR fibroblasts and lymphocytes, both DNA-PKcsPQR/PQR and DNA-PKcsSD/SD mice retained normal kinase activity and underwent efficient V(D)J recombination and class switch recombination, indicating that phosphorylation at the S2053 cluster of murine DNA-PKcs (corresponding to S2056 of human DNA-PKcs), although important for radiation resistance, is dispensable for the end-ligation and hairpin-opening function of DNA-PK essential for lymphocyte development.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/fisiología , Linfocitos/fisiología , Animales , Diferenciación Celular/genética , Línea Celular , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Fibroblastos/efectos de la radiación , Técnicas de Sustitución del Gen , Humanos , Cambio de Clase de Inmunoglobulina/genética , Activación de Linfocitos , Linfocitos/efectos de la radiación , Ratones , Ratones Noqueados , Mutación/genética , Tolerancia a Radiación , Serina/genética
12.
Proc Natl Acad Sci U S A ; 115(34): 8615-8620, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30072430

RESUMEN

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a classical nonhomologous end-joining (cNHEJ) factor. Loss of DNA-PKcs diminished mature B cell class switch recombination (CSR) to other isotypes, but not IgG1. Here, we show that expression of the kinase-dead DNA-PKcs (DNA-PKcsKD/KD ) severely compromises CSR to IgG1. High-throughput sequencing analyses of CSR junctions reveal frequent accumulation of nonproductive interchromosomal translocations, inversions, and extensive end resection in DNA-PKcsKD/KD , but not DNA-PKcs-/- , B cells. Meanwhile, the residual joints from DNA-PKcsKD/KD cells and the efficient Sµ-Sγ1 junctions from DNA-PKcs-/- B cells both display similar preferences for small (2-6 nt) microhomologies (MH). In DNA-PKcs-/- cells, Sµ-Sγ1 joints are more resistant to inversions and extensive resection than Sµ-Sε and Sµ-Sµ joints, providing a mechanism for the isotype-specific CSR defects. Together, our findings identify a kinase-dependent role of DNA-PKcs in suppressing MH-mediated end joining and a structural role of DNA-PKcs protein in the orientation of CSR.


Asunto(s)
Linfocitos B/enzimología , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Cambio de Clase de Inmunoglobulina/fisiología , Inmunoglobulina G/biosíntesis , Proteínas Nucleares/metabolismo , Recombinación Genética/fisiología , Animales , Linfocitos B/citología , Línea Celular , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Inmunoglobulina G/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética
13.
Cell Tissue Bank ; 21(3): 349-360, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32248316

RESUMEN

Vascular dementia (VD) is the second most common cause of dementia following Alzheimer's disease (AD). The major symptoms of VD including memory loss, language deficits and impairment of executive functions. Its specific etiology and pathogenesis remain unknown. Currently, treatment options of VD are still limited. The therapeutic strategies aim to control the vascular risk factors and improve the cognitive function. In recent years, cell therapy for neurodegenerative diseases has attracted a great deal of attention. Evidence suggested that stem cell transplantation could improve the symptoms of cerebral infarction and AD. Therefore, it may serve as a potential therapy for VD. We summarized the latest research results both in vitro and in vivo. Further, the clinical trial of stem cell transplantation in VD patients was also reviewed. Finally, the limitations and future directions of cell therapy in VD treatment were discussed.


Asunto(s)
Demencia Vascular/terapia , Células Madre/citología , Investigación Biomédica Traslacional , Animales , Ensayos Clínicos como Asunto , Humanos , Modelos Biológicos , Trasplante de Células Madre
14.
Clin Chem Lab Med ; 57(7): 1073-1083, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-30978169

RESUMEN

Background Diagnostic biomarkers for the detection of colorectal cancers (CRCs) are lacking. Recent studies have demonstrated that circulating long non-coding RNAs have the potential to serve as biomarkers for the detection of cancers. We analyzed the significance of lncRNAs 91H, PVT-1 and MEG3 in the detection of CRC. Methods We examined the expression levels of 13 candidate lncRNAs in the plasma of 18 CRC patients and 20 non-cancerous controls. Then, we validated our findings by determining the expression levels of six promising lncRNAs in CRC tissues and normal colorectal tissues. Finally, we evaluated the clinical relevance of lncRNAs 91H, PVT-1 and MEG3 in the plasma of 58 CRC patients and 56 non-cancerous controls. Results Our data revealed that the expression levels of lncRNAs 91H, PVT-1 and MEG3 were significantly higher in plasma samples from CRC patients than in those from non-cancerous controls. The combination of 91H, PVT-1 and MEG3 could discriminate CRC patients from non-cancerous controls with an area under the receiver-operating curve (AUC) of 0.877 at a cut-off value of 0.3816, with a sensitivity of 82.76% and 78.57% specificity. More importantly, the combination of lncRNAs shows more sensitivity in the detection of early-stage CRC than the combination of CEA and CA19-9, biomarkers currently used for CRC detection (p < 0.0001). Conclusions lncRNAs 91H, PVT-1 and MEG3 are promising diagnostic biomarkers for early-stage CRC.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/diagnóstico , Detección Precoz del Cáncer/métodos , ARN Largo no Codificante/sangre , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/aislamiento & purificación , Neoplasias Colorrectales/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , ARN Largo no Codificante/genética , ARN Largo no Codificante/aislamiento & purificación , Reproducibilidad de los Resultados , Células Tumorales Cultivadas
15.
Blood ; 125(17): 2665-8, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25721125

RESUMEN

Ataxia telangiectasia mutated (ATM) is a protein kinase and a master regulator of DNA-damage responses. Germline ATM inactivation causes ataxia-telangiectasia (A-T) syndrome with severe lymphocytopenia and greatly increased risk for T-cell lymphomas/leukemia. Both A-T and T-cell prolymphoblastic leukemia patients with somatic mutations of ATM frequently carry inv(14;14) between the T-cell receptor α/δ (TCRα/δ) and immunoglobulin H loci, but the molecular origin of this translocation remains elusive. ATM(-/-) mice recapitulate lymphocytopenia of A-T patients and routinely succumb to thymic lymphomas with t(12;14) translocation, syntenic to inv(14;14) in humans. Here we report that deletion of the TCRδ enhancer (Eδ), which initiates TCRδ rearrangement, significantly improves αß T cell output and effectively prevents t(12;14) translocations in ATM(-/-) mice. These findings identify the genomic instability associated with V(D)J recombination at the TCRδ locus as the molecular origin of both lymphocytopenia and the signature t(12;14) translocations associated with ATM deficiency.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Cromosomas Humanos Par 14/genética , Linfoma de Células T/genética , Linfopenia/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Linfocitos T/patología , Translocación Genética , Secuencia de Aminoácidos , Animales , Ataxia Telangiectasia/complicaciones , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patología , Proteínas de la Ataxia Telangiectasia Mutada/análisis , Eliminación de Gen , Inestabilidad Genómica , Humanos , Linfoma de Células T/complicaciones , Linfoma de Células T/patología , Linfopenia/complicaciones , Linfopenia/patología , Ratones , Datos de Secuencia Molecular , Linfocitos T/metabolismo , Recombinación V(D)J
16.
Ultrastruct Pathol ; 40(1): 7-13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26583435

RESUMEN

Pulmonary alveolar proteinosis (PAP) is a rare diffuse lung disease characterized by the accumulation of intra-alveolar lipoprotein-like surfactants. Lung core biopsy and bronchoalveolar lavage (BAL) fluid are currently the two major sources of sampling for diagnosis. In the present study, we assessed the value of induced sputum in diagnosing PAP by transmission electron microscopy and examined the PAP 2-year death rate in Asians. Transmission electron microscopy was performed on the samples from 17 patients with PAP, 13 patients with inflammatory lung diseases, and 13 healthy adults. The PAP patients were followed up for 3-156 months, and inflammatory lung diseases patients or healthy adults for 12-36 months. The ultrastructural features including diagnostic lamellar bodies of induced sputum deposition (ISD) samples were similar to that of the BAL fluid sediment. However, the rates of lamellar bodies were 73.7% in the ISD group, significantly higher than the spontaneous sputum deposition (SSD) group (42.1%, P < .0487) and similar to the BAL sediment (76.2%) and the lung biopsy (54.5%) groups. The overall 2-year death rate of our PAP patients was 17.6% (3/17), not statistically different from the healthy adults and patients with inflammatory diseases (0/13, P = .237 for both). ISD may be the preferred non-invasive sampling method for diagnosing PAP by electronic microscopy because of the higher diagnostic yield than SSD. The diagnostic yields of this noninvasive method were similar to that of lung core biopsy and BAL.


Asunto(s)
Líquido del Lavado Bronquioalveolar/citología , Enfermedades Pulmonares/patología , Pulmón/patología , Pulmón/ultraestructura , Proteinosis Alveolar Pulmonar/patología , Esputo/metabolismo , Adulto , Anciano , Biopsia , Femenino , Humanos , Enfermedades Pulmonares/diagnóstico , Masculino , Microscopía Electrónica de Transmisión/métodos , Persona de Mediana Edad , Proteinosis Alveolar Pulmonar/mortalidad
17.
Microb Cell Fact ; 14: 86, 2015 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-26070803

RESUMEN

BACKGROUND: The overexpression of key enzymes in a metabolic pathway is a frequently used genetic engineering strategy for strain improvement. Metabolic control analysis has been proposed to quantitatively determine key enzymes. However, the lack of quality data often makes it difficult to correctly identify key enzymes through control analysis. Here, we proposed a method combining in vitro metabolic pathway analysis and proteomics measurement to find the key enzymes in threonine synthesis pathway. RESULTS: All enzymes in the threonine synthesis pathway were purified for the reconstruction and perturbation of the in vitro pathway. Label-free proteomics technology combined with APEX (absolute protein expression measurements) data analysis method were employed to determine the absolute enzyme concentrations in the crude enzyme extract obtained from a threonine production strain during the fastest threonine production period. The flux control coefficient of each enzyme in the pathway was then calculated by measuring the flux changes after titration of the corresponding enzyme. The isoenzyme LysC catalyzing the first step in the pathway has the largest flux control coefficient, and thus its concentration change has the biggest impact on pathway flux. To verify that the key enzyme identified through in vitro pathway analysis is also the key enzyme in vivo, we overexpressed LysC in the original threonine production strain. Fermentation results showed that the threonine concentration was increased 30% and the yield was increased 20%. CONCLUSIONS: In vitro metabolic pathways simulating in vivo cells can be built based on precise measurement of enzyme concentrations through proteomics technology and used for the determination of key enzymes through metabolic control analysis. This provides a new way to find gene overexpression targets for industrial strain improvement.


Asunto(s)
Vías Biosintéticas , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Treonina/biosíntesis , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética
18.
Proc Natl Acad Sci U S A ; 109(10): 3903-8, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22355127

RESUMEN

Nonhomologous end joining (NHEJ), a major pathway of DNA double-strand break (DSB) repair, is required during lymphocyte development to resolve the programmed DSBs generated during Variable, Diverse, and Joining [V(D)J] recombination. XRCC4-like factor (XLF) (also called Cernunnos or NHEJ1) is a unique component of the NHEJ pathway. Although germ-line mutations of other NHEJ factors abrogate lymphocyte development and lead to severe combined immunodeficiency (SCID), XLF mutations cause a progressive lymphocytopenia that is generally less severe than SCID. Accordingly, XLF-deficient murine lymphocytes show no measurable defects in V(D)J recombination. We reported earlier that ATM kinase and its substrate histone H2AX are both essential for V(D)J recombination in XLF-deficient lymphocytes, despite moderate role in V(D)J recombination in WT cells. p53-binding protein 1 (53BP1) is another substrate of ATM. 53BP1 deficiency led to small reduction of peripheral lymphocyte number by compromising both synapse and end-joining at modest level during V(D)J recombination. Here, we report that 53BP1/XLF double deficiency blocks lymphocyte development at early progenitor stages, owing to severe defects in end joining during chromosomal V(D)J recombination. The unrepaired DNA ends are rapidly degraded in 53BP1(-/-)XLF(-/-) cells, as reported for H2AX(-/-)XLF(-/-) cells, revealing an end protection role for 53BP1 reminiscent of H2AX. In contrast to the early embryonic lethality of H2AX(-/-)XLF(-/-) mice, 53BP1(-/-)XLF(-/-) mice are born alive and develop thymic lymphomas with translocations involving the T-cell receptor loci. Together, our findings identify a unique function for 53BP1 in end-joining and tumor suppression.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Linfocitos/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Daño del ADN , Ratones , Ratones SCID , Ratones Transgénicos , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Recombinación Genética , Proteína 1 de Unión al Supresor Tumoral P53 , VDJ Recombinasas/metabolismo
19.
FASEB J ; 27(8): 2988-94, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23603833

RESUMEN

The membrane receptor TCblR/CD320 binds transcobalamin (TC) saturated with vitamin B12 [cobalamin (Cbl)] and mediates cellular uptake of the vitamin. The specificity of TC for Cbl and of the receptor for TC-Cbl ensures efficient uptake of Cbl into cells. The high-affinity interaction of TCblR with TC-Cbl (Ka=10 nM(-1)) was investigated using deletions and mutations of amino acid sequences in TCblR. Only the extracellular region (aa 32-229) is needed for TC-Cbl binding, but the N-glycosylation sites (N126, N195, and N213) are of no importance for this function. Deleting the cysteine-rich region (aa 95-141) that separates the two low-density lipoprotein receptor type A (LDLR-A) domains does not affect TC-Cbl binding (Ka = 19-24 nM(-1)). The two LDLR-A domains (aa 54-89 and 132-167) with the negatively charged acidic residues involved in Ca(2+) binding are critical determinants of ligand binding. The cytoplasmic tail is apparently crucial for internalization of the ligand. Within this region, the RPLGLL motif and the PDZ binding motifs (QERL/KESL) appear to be involved in initiating and completing the process of ligand internalization. Mutations and deletions of these regions involved in binding and internalization of TC-Cbl are likely to produce the biochemical and clinical phenotype of Cbl deficiency.


Asunto(s)
Antígenos CD/genética , Antígenos CD/metabolismo , Transcobalaminas/metabolismo , Vitamina B 12/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Unión Competitiva , Endocitosis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Cinética , Ligandos , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Dominios PDZ/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Mapeo de Interacción de Proteínas/métodos , Receptores de Superficie Celular , Receptores de LDL/metabolismo , Eliminación de Secuencia
20.
Proc Natl Acad Sci U S A ; 108(5): 2028-33, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245310

RESUMEN

Antigen receptor variable region exons are assembled during lymphocyte development from variable (V), diversity (D), and joining (J) gene segments. Each germ-line gene segment is flanked by recombination signal sequences (RSs). Recombination-activating gene endonuclease initiates V(D)J recombination by cleaving a pair of gene segments at their junction with flanking RSs to generate covalently sealed (hairpinned) coding ends (CEs) and blunt 5'-phosphorylated RS ends (SEs). Subsequently, nonhomologous end joining (NHEJ) opens, processes, and fuses CEs to form coding joins (CJs) and precisely joins SEs to form signal joins (SJs). DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activates Artemis endonuclease to open and process hairpinned CEs before their fusion into CJs by other NHEJ factors. Although DNA-PKcs is absolutely required for CJs, SJs are formed to variable degrees and with variable fidelity in different DNA-PKcs-deficient cell types. Thus, other factors may compensate for DNA-PKcs function in SJ formation. DNA-PKcs and the ataxia telangiectasia-mutated (ATM) kinase are members of the same family, and they share common substrates in the DNA damage response. Although ATM deficiency compromises chromosomal V(D)J CJ formation, it has no reported role in SJ formation in normal cells. Here, we report that DNA-PKcs and ATM have redundant functions in SJ formation. Thus, combined DNA-PKcs and ATM deficiency during V(D)J recombination leads to accumulation of unjoined SEs and lack of SJ fidelity. Moreover, treatment of DNA-PKcs- or ATM-deficient cells, respectively, with specific kinase inhibitors for ATM or DNA-PKcs recapitulates SJ defects, indicating that the overlapping V(D)J recombination functions of ATM and DNA-PKcs are mediated through their kinase activities.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Recombinación Genética , Proteínas Supresoras de Tumor/fisiología , VDJ Recombinasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Cartilla de ADN , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA