Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Acta Pharmacol Sin ; 40(7): 879-894, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30568253

RESUMEN

Increasing evidence has demonstrated that excessive fructose intake induces liver fibrosis. Epithelial-mesenchymal transition (EMT) driven by transforming growth factor-ß1 (TGF-ß1)/mothers against decapentaplegic homolog (Smad) signaling activation promotes the occurrence and development of liver fibrosis. Magnesium isoglycyrrhizinate is clinically used as a hepatoprotective agent to treat liver fibrosis, but its underlying molecular mechanism has not been identified. Using a rat model, we found that high fructose intake reduced microRNA (miR)-375-3p expression and activated the janus-activating kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) cascade and TGF-ß1/Smad signaling, which is consistent with the EMT and liver fibrosis. To further verify these observations, BRL-3A cells and/or primary rat hepatocytes were exposed to high fructose and/or transfected with a miR-375-3p mimic or inhibitor or treated with a JAK2 inhibitor, and we found that the low expression of miR-375-3p could induce the JAK2/STAT3 pathway to activate TGF-ß1/Smad signaling and promote the EMT. Magnesium isoglycyrrhizinate was found to ameliorate high fructose-induced EMT and liver fibrosis in rats. More importantly, magnesium isoglycyrrhizinate increased miR-375-3p expression to suppress the JAK2/STAT3 pathway and TGF-ß1/Smad signaling in these animal and cell models. This study provides evidence showing that magnesium isoglycyrrhizinate attenuates liver fibrosis associated with a high fructose diet.


Asunto(s)
Cirrosis Hepática/tratamiento farmacológico , MicroARNs/metabolismo , Saponinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Triterpenos/uso terapéutico , Animales , Línea Celular , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fructosa , Janus Quinasa 2/metabolismo , Cirrosis Hepática/inducido químicamente , Masculino , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Saponinas/farmacología , Proteínas Smad Reguladas por Receptores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Triterpenos/farmacología
2.
Pharmacol Res ; 137: 64-75, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30248460

RESUMEN

Excess fructose consumption causes high prevalence of metabolic syndrome and inflammatory liver diseases. The aim of the current study was to investigate the therapeutic effects and underlying molecular mechanisms of curcumin and allopurinol in high fructose-induced hepatic inflammation. Male Sprague-Dawley rats were supplied with standard rat chow and drinking water containing 10% (w/v) fructose for consecutive 12 weeks. Curcumin (15, 30 and 60 mg/kg) and allopurinol (5 mg/kg) were administered to rats via oral gavage daily from Week 7 to 12. For in vitro experiments, curcumin (2.5 µM) and allopurinol (100 µM) were treated to 5 mM fructose-exposed Buffalo rat liver cell line (BRL-3 A) and human hepatoblastoma cell line (HepG2), respectively. The data from these animal and hepatocyte models showed that curcumin and allopurinol ameliorated fructose-induced metabolic symptom, especially hepatic inflammation in rats. Interestingly, down-regulation of microRNA-200a (miR-200a) was screened out in livers of fructose-fed rats and then validated in fructose-exposed BRL-3 A and HepG2 cells. Fructose-induced miR-200a low-expression was identified as a negative mediator of thioredoxin interacting protein (TXNIP) by direct targeting of 3'UTR-rTXNIP, subsequently activating the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in BRL-3 A cells. Curcumin, as well as allopurinol, notably up-regulated miR-200a expression, accordingly, down-regulated TXNIP and inhibited NLRP3 inflammasome activation in fructose-fed rat livers and fructose-exposed BRL-3 A and HepG2 cells. Taken together, this study firstly identified miR-200a as a biomarker of fructose-induced hepatic inflammation, and revealed the hepatoprotection of curcumin and allopurinol via up-regulating miR-200a-mediated TXNIP/NLRP3 inflammasome pathway.


Asunto(s)
Alopurinol/farmacología , Proteínas Portadoras/metabolismo , Curcumina/farmacología , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sustancias Protectoras/farmacología , Animales , Proteínas de Ciclo Celular , Línea Celular , Fructosa , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratas Sprague-Dawley
4.
J Cell Biochem ; 113(6): 1811-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22492268

RESUMEN

The multipotent mouse F9 embryonic carcinoma cell is an ideal model system to investigate the mechanism of retinoic acid (RA) in cell differentiation and cell growth control and the biochemical basis of early embryonic development. We reported here a proteomics approach to study protein expression changes during the differentiation of F9 cells into the visceral endoderm. F9 cells were incubated with or without RA at 0, 24, 48, and 72 h. Total proteins extracted were separated by two-dimensional electrophoresis (2-DE) and the protein patterns on the gels were comparatively analyzed by computer. Approximately 1,100 protein spots were detected in the F9 proteome, within the pH 3-10 range. Fourteen protein spots which the levels of expression were found to be altered dramatically during the F9 cells differentiating, and were identified by MALDI-TOF MS or ESI-MS/MS. These proteins included metabolism enzymes, HSP60s, RAN, hnRNP K, FUBP1, VDAC1, STI1, and prohibitin. These proteins are involved in cellar metabolism, gene expression regulation, stress response, and apoptosis, respectively. The data from proteomic analyze are consistent with the result obtained from Western blot analysis. This study increases our understanding of the proteomics changes during F9 cells differentiation induced by RA.


Asunto(s)
Diferenciación Celular , Células Madre de Carcinoma Embrionario/citología , Células Madre de Carcinoma Embrionario/metabolismo , Proteoma , Proteómica/métodos , Tretinoina/farmacología , Animales , Apoptosis , Proliferación Celular/efectos de los fármacos , Endodermo/embriología , Regulación del Desarrollo de la Expresión Génica , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico , Células Tumorales Cultivadas
5.
Eur J Nutr ; 51(5): 593-606, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21909718

RESUMEN

BACKGROUND: Renal organic ion transporters and uromodulin (UMOD) play the important roles in renal urate excretion and function. Hyperuricemia is considered as a risk factor for the development of renal dysfunction. The flavonoid quercetin in diets exerts the hypouricemic and nephroprotective effects. PURPOSES: To evaluate the effects of quercetin on renal organic ion transporters and UMOD in hyperuricemic mice. METHODS: Kun-Ming mice were divided into normal and hyperuricemic groups receiving water, 25, 50 and 100 mg/kg quercetin, 5 mg/kg allopurinol, respectively. Hyperuricemic mice were orally gavaged with 250 mg/kg oxonate daily for 1 week. Quercetin and allopurinol were orally gavaged on the day when oxonate or water was given 1 h later. After 1 week, serum uric acid, creatinine and blood urea nitrogen concentrations, excretion of urate and creatinine, and fractional excretion of uric acid were measured. The mRNA and protein levels of renal urate transporter 1 (mURAT1), glucose transporter 9 (mGLUT9), organic anion transporter 1 (mOAT1) and organic cation/carnitine transporters (mOCT1, mOCT2, mOCTN1 and mOCTN2) in mice were analyzed. Simultaneously, UMOD levels in serum, urine and kidney, as well as renal UMOD mRNA expression were detected. RESULTS: Quercetin significantly restored oxonate-induced abnormalities of these biochemical indexes compared with normal vehicle group. Furthermore, it remarkably prevented expression changes of renal organic ion transporters and UMOD, and UMOD level alteration in hyperuricemic mice. CONCLUSIONS: These results suggest that quercetin has the uricosuric and nephroprotective actions mediated by regulating the expression levels of renal organic ion transporters and UMOD.


Asunto(s)
Regulación de la Expresión Génica , Hiperuricemia/tratamiento farmacológico , Quercetina/farmacología , Uromodulina/sangre , Uromodulina/orina , Alopurinol/farmacología , Animales , Nitrógeno de la Urea Sanguínea , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Creatinina/sangre , Modelos Animales de Enfermedad , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Hiperuricemia/fisiopatología , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Factor 1 de Transcripción de Unión a Octámeros/genética , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador 2 de Cátion Orgánico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Miembro 5 de la Familia 22 de Transportadores de Solutos , Simportadores , Ácido Úrico/sangre , Fenómenos Fisiológicos del Sistema Urinario/efectos de los fármacos , Uromodulina/genética
6.
Front Pharmacol ; 13: 872375, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105196

RESUMEN

Antidepressant fluoxetine can affect cerebral glucose metabolism in clinic, but the underlying molecular mechanism remains poorly understood. Here, we examined the effect of fluoxetine on brain regional glucose metabolism in a rat model of depression induced by repeated corticosterone injection, and explored the molecular mechanism. Fluoxetine was found to recover the decrease of 18F-fluorodeoxyglucose (18F-FDG) signal in prefrontal cortex (PFC), and increased 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG, a fluorescent glucose analog) uptake in an astrocyte-specific manner in ex vivo cultured PFC slices from corticosterone-induced depressive rats, which were consistent with its improvement of animal depressive behaviors. Furthermore, fluoxetine restricted nuclear translocation of glucocorticoid receptor (GR) to suppress the transcription of thioredoxin interacting protein (TXNIP). Subsequently, it promoted glucose transporter 1 (GLUT1)-mediated glucose uptake and glycolysis of PFC astrocytes through suppressing TXNIP expression under corticosterone-induced depressive state. More importantly, fluoxetine could improve glucose metabolism of corticosterone-stimulated astrocytes via TXNIP-GLUT1 pathway. These results demonstrated that fluoxetine increased astrocytic glucose uptake and glycolysis in corticosterone-induced depression via restricting GR-TXNIP-GLUT1 pathway. The modulation of astrocytic glucose metabolism by fluoxetine was suggested as a novel mechanism of its antidepressant action.

7.
Phytomedicine ; 91: 153643, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34325092

RESUMEN

BACKGROUND: Atractylodis rhizoma, an aromatic herb for resolving dampness, is used to treat Kidney-related edema in traditional Chinese medicine for thousands years. This herb possesses antioxidant effect. However, it is not yet clear how Atractylodis rhizoma prevents glomerular injury through its anti-oxidation. PURPOSE: Based the analysis of Atractylodis rhizoma water extract (ARE) components and network pharmacology, this study was to explore whether ARE prevented glomerular injury via its anti-oxidation to inhibit oxidative stress-driven transient receptor potential channel 6 (TRPC6) and its downstream molecule calcium/calmodulin-dependent protein kinase IV (CaMK4) signaling. METHODS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze ARE components. Network pharmacology analysis was preliminarily performed. Male Sprague-Dawley rats were given 10% fructose drinking water (100 mL/d) for 16 weeks. ARE at 720 and 1090 mg/kg was orally administered to rats for the last 8 weeks. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in rat kidney cortex were detected, respectively. In rat glomeruli, redox-related factors forkhead box O3 (FoxO3), SOD2 and catalase (CAT), podocyte slit diaphragm proteins podocin and nephrin, cytoskeleton proteins CD2-associated protein (CD2AP) and α-Actinin-4, as well as TRPC6, p-CaMK4 and synaptopodin protein levels were analyzed by Western Blotting. SOD2 and CAT mRNA levels were detected by qRT-PCR. RESULTS: 36 components were identified in ARE. Among them, network pharmacology analysis indicated that ARE might inhibit kidney oxidative stress. Accordingly, ARE up-regulated nuclear FoxO3 expression, and then increased SOD2 and CAT at mRNA and protein levels in glomeruli of fructose-fed rats. It reduced H2O2 and MDA levels, and increased SOD activity in renal cortex of fructose-fed rats. Subsequently, ARE down-regulated TRPC6 and p-CaMK4, and up-regulated synaptopodin in glomeruli of fructose-fed rats. Furthermore, ARE increased podocin and nephrin, as well as CD2AP and α-Actinin-4, being consistent with its reduction of urine albumin-to-creatinine ratio and improvement of glomerular structure injury in this animal model. CONCLUSIONS: These results suggest that ARE may prevent glomerular injury in fructose-fed rats possibly by reducing oxidative stress to inhibit TRPC6/p-CaMK4 signaling and up-regulate synaptopodin expression. Therefore, ARE may be a promising drug for treating high fructose-induced glomerular injury in clinic.


Asunto(s)
Atractylodes , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Enfermedades Renales/tratamiento farmacológico , Extractos Vegetales/farmacología , Canales Catiónicos TRPC/metabolismo , Animales , Atractylodes/química , Cromatografía Liquida , Fructosa/efectos adversos , Peróxido de Hidrógeno/metabolismo , Riñón/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Masculino , Oxidación-Reducción , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Rizoma/química , Transducción de Señal , Canal Catiónico TRPC6 , Espectrometría de Masas en Tándem
8.
Eur J Pharmacol ; 913: 174616, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34780752

RESUMEN

High fructose has been reported to drive glomerular podocyte oxidative stress and then induce podocyte foot process effacement in vivo, which could be partly regarded as podocyte hypermotility in vitro. Atractylodin possesses anti-oxidative effect. The aim of this study was to explore whether atractylodin prevented against fructose-induced podocyte hypermotility via anti-oxidative property. In fructose-exposed conditionally immortalized human podocytes, we found that atractylodin inhibited podocyte hypermotility, and up-regulated slit diaphragm proteins podocin and nephrin, and cytoskeleton protein CD2-associated protein (CD2AP), α-Actinin-4 and synaptopodin expression, which were consistent with its anti-oxidative activity evidenced by up-regulation of catalase (CAT) and superoxide dismutase (SOD) 1 expression, and reduction of reactive oxygen species (ROS) production. Atractylodin also significantly suppressed expression of transient receptor potential channels 6 (TRPC6) and phosphorylated Ca2+/calmodulin-dependent protein kinase IV (CaMK4) in cultured podocytes with fructose exposure. Additionally, in fructose-exposed podocytes, CaMK4 siRNA up-regulated synaptopodin and reduced podocyte hypermotility, whereas, silencing of TRPC6 by siRNA decreased p-CaMK4 expression, inhibited podocyte hypermotility, showing TRPC6/p-CaMK4 signaling activation in podocyte hypermotility under fructose condition. Just like atractylodin, antioxidant N-acetyl-L-cysteine (NAC) could inhibit TRPC6/p-CaMK4 signaling activation to reduce fructose-induced podocytes hypermotility. These results first demonstrated that the anti-oxidative property of atractylodin may contribute to the suppression of podocyte hypermotility via inhibiting TRPC6/p-CaMK4 signaling and restoring synaptopodin expression abnormality.


Asunto(s)
Antioxidantes/farmacología , Fructosa/efectos adversos , Furanos/farmacología , Podocitos/efectos de los fármacos , Edulcorantes/efectos adversos , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Proteínas de Microfilamentos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Podocitos/fisiología , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Canal Catiónico TRPC6/antagonistas & inhibidores , Canal Catiónico TRPC6/metabolismo
9.
Cell Signal ; 86: 110082, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34252535

RESUMEN

Glomerular hypertrophy is a crucial factor of severe podocyte damage and proteinuria. Our previous study showed that high fructose induced podocyte injury. The current study aimed to explore a novel molecular mechanism underlying podocyte hypertrophy induced by high fructose. Here we demonstrated for the first time that high fructose significantly initiated the hypertrophy in rat glomeruli and differentiated human podocytes (HPCs). Consistently, it induced inflammatory response with the down-regulation of anti-inflammatory factor zinc-finger protein tristetraprolin (TTP) and the activation of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling in these animal and cell models. Subsequently, high-expression of microRNA-92a-3p (miR-92a-3p) and its target protein cyclin-dependent kinase inhibitor p57 (P57) down-regulation, representing abnormal proliferation and apoptosis, were observed in vivo and in vitro. Moreover, high fructose increased ketohexokinase-A (KHK-A) expression in rat glomeruli and differentiated HPCs. Exogenous IL-6 stimulation up-regulated IL-6/STAT3 signaling and miR-92a-3p, reduced P57 expression and promoted podocyte proliferation, apoptosis and hypertrophy in vitro. The data from anti-inflammatory agent maslinic acid treatment or TTP siRNA transfection showed that high fructose may decrease TTP to activate IL-6/STAT3 signaling in podocyte overproliferation and apoptosis, causing podocyte hypertrophy. Whereas, KHK-A siRNA transfection remarkably restored high fructose-induced TTP down-regulation, IL-6/STAT3 signaling activation, podocyte overproliferation, apoptosis and hypertrophy in differentiated HPCs. Taken together, these results suggested that high fructose possibly increased KHK-A expression to down-regulate TTP, subsequently activated IL-6/STAT3 signaling to interfere with podocyte proliferation and apoptosis by up-regulating miR-92a-3p to suppress P57 expression, causing podocyte hypertrophy. Therefore, the inactivation of IL-6/STAT3 to relieve podocyte hypertrophy mediated by inhibiting KHK-A to increase TTP may be a novel strategy for high fructose diet-associated podocyte injury and proteinuria.


Asunto(s)
MicroARNs , Podocitos , Animales , Regulación hacia Abajo , Fructoquinasas/genética , Fructoquinasas/metabolismo , Fructosa/metabolismo , Hipertrofia/metabolismo , Interleucina-6/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Podocitos/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
10.
Mol Cell Endocrinol ; 520: 111079, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33189863

RESUMEN

High fructose is considered a causative factor for oxidative stress and autophagy imbalance that cause kidney pathogenesis. Antioxidant polydatin isolated from Polygonum cuspidatum has been reported to protect against kidney injury. In this study, polydatin was found to ameliorate fructose-induced podocyte injury. It activated mammalian target of rapamycin complex 1 (mTORC1) and suppressed autophagy in glomeruli of fructose-fed rats and in fructose-exposed conditionally immortalized human podocytes (HPCs). Polydatin also enhanced nuclear factor-E2-related factor 2 (Nrf2)-dependent antioxidant capacity to suppress fructose-induced autophagy activation in vivo and in vitro, with the attenuation of fructose-induced up-regulation of cellular light chain 3 (LC3) II/I protein levels. This effect was abolished by Raptor siRNA in fructose-exposed HPCs. These results demonstrated that polydatin ameliorated fructose-induced autophagy imbalance in an mTORC1-dependent manner via improving Nrf2-dependent antioxidant capacity during podocyte injury. In conclusion, polydatin with anti-oxidation activity suppressed autophagy to protect against fructose-induced podocyte injury.


Asunto(s)
Antioxidantes/metabolismo , Autofagia , Conducta Alimentaria , Glucósidos/farmacología , Homeostasis , Factor 2 Relacionado con NF-E2/metabolismo , Podocitos/metabolismo , Estilbenos/farmacología , Adenosina Trifosfato/biosíntesis , Adenilato Quinasa/metabolismo , Animales , Autofagia/efectos de los fármacos , Fructosa , Homeostasis/efectos de los fármacos , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Podocitos/efectos de los fármacos , Podocitos/patología , Proteinuria/complicaciones , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Eur J Pharmacol ; 886: 173546, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32931782

RESUMEN

Magnesium as an enzymatic activator is essential for various physiological functions such as cell cycle, metabolic regulation, muscle contraction, and vasomotor tone. A growing body of evidence supports that magnesium supplementation (mainly magnesium sulfate and magnesium oxide) prevents or treats various types of disorders or diseases related to respiratory system, reproductive system, nervous system, digestive system, and cardiovascular system as well as kidney injury, diabetes and cancer. The ongoing pandemic coronavirus disease 19 (COVID-19) characterized by respiratory tract symptoms with different degrees of important organ and tissue damages has attracted global attention. Particularly, effective drugs are still lacking in the COVID-19 therapy. In this review, we find and summarize the effectiveness of magnesium supplementation on the disorders or diseases, and provide a reference to the possibility of magnesium supplementation for supportive treatment in patients with COVID-19.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Suplementos Dietéticos , Magnesio/farmacología , Neumonía Viral/tratamiento farmacológico , Animales , COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/prevención & control , Humanos , Magnesio/efectos adversos , Magnesio/uso terapéutico , Pandemias/prevención & control , Neumonía Viral/complicaciones , Neumonía Viral/prevención & control , Seguridad
12.
J Agric Food Chem ; 68(5): 1436-1446, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31927917

RESUMEN

High fructose intake promotes hepatic lipid accumulation. Pterostilbene, a natural analogue of resveratrol found in diet berries, exhibits a hepatoprotective property. Here, we studied the protection by pterostilbene against fructose-induced hepatic lipid accumulation and explored its possible mechanism. We observed a high expression of microRNA-34a (miR-34a, P < 0.05) and a low expression of its target, sirtuin1 (Sirt1, mRNA: P < 0.01; protein: P < 0.001), with the overactivation of downstream sterol regulatory element-binding protein-1 (SREBP-1) lipogenic pathway (nuclear SREBP-1 protein: P < 0.05; FAS and SCD1 mRNA: P < 0.01), in rat livers, as well as BRL-3A and HepG2 cells, stimulated by fructose. More interestingly, pterostilbene recovered the fructose-disturbed miR-34a expression (0.3-0.5-fold vs fructose control, P < 0.05), Sirt1 protein level (1.2- to 1.5-fold vs fructose control, P < 0.05), and SREBP-1 lipogenic pathway, resulting in significant amelioration of hepatocyte lipid accumulation in animal [hepatic triglyceride and total cholesterol (TG&TC) mg/g·wet tissue: 4.90 ± 0.19, 5.23 ± 0.16, 5.20 ± 0.29 vs fructose control 9.73 ± 1.06, P < 0.001; 3.18 ± 0.30, 3.31 ± 0.39, 3.37 ± 0.47 vs 5.67 ± 0.28, P < 0.001] and cell models (BRL-3A TG&TC mmol/g·protein: 0.123 ± 0.011 vs 0.177 ± 0.004, P < 0.001; 0.169 ± 0.011 vs 0.202 ± 0.008, P < 0.05; HepG2: 0.257 ± 0.005 vs 0.303 ± 0.016, P < 0.05; 0.143 ± 0.004 vs 0.201 ± 0.008, P < 0.001). These results provide the experimental evidence supporting the anti-lipogenic effect of pterostilbene against fructose-induced hepatic lipid accumulation via modulating the miR-34a/Sirt1/SREBP-1 pathway.


Asunto(s)
Fructosa/metabolismo , Hígado/efectos de los fármacos , MicroARNs/metabolismo , Sirtuina 1/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Estilbenos/administración & dosificación , Animales , Colesterol/metabolismo , Fructosa/efectos adversos , Hígado/metabolismo , Masculino , MicroARNs/genética , Ratas , Ratas Sprague-Dawley , Sirtuina 1/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Triglicéridos/metabolismo
13.
Phytomedicine ; 63: 152986, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31310912

RESUMEN

BACKGROUND: Polygonum cuspidatum has been used in traditional Chinese medicine to treat liver disorders associated with oxidative stress, inflammation and lipid accumulation for centuries in patients. PURPOSE: The aim of this study was to examine whether P. cuspidatum extract (PCE) prevented against fructose-induced liver lipid accumulation via regulating Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. METHOD: PCE was administered orally to male Sprague-Dawley rats given 10% fructose drinking water for 6 weeks at 80 and 160 mg/kg once daily for 11 weeks. RESULTS: PCE significantly alleviated liver lipid accumulation in fructose-fed rats with metabolic syndrome. It also inhibited Keap1, activated Nrf2 antioxidant pathway, resulting in the suppression of oxidative stress, evidenced by reducing hydrogen peroxide (H2O2), malondialdehyde (MDA) and hydroxy radical (OH•) levels, and increasing glutathione (GSH)/oxidized glutathione (GSSG) ratio as well as superoxidase dismutase (SOD) and catalase (CAT) activity in the liver of fructose-fed rats. Additionally, PCE up-regulated peroxisome proliferator activated receptor-α (PPAR-α), and down-regulated sterol regulatory element binging protein 1 (SREBP-1), fatty acid synthetase (FAS) and stearoyl-CoA desaturase-1 (SCD-1) in this animal model, being consistent with its reduction of triglyceride (TG) levels. CONCLUSION: These results demonstrate that PCE reduces oxidative stress, and prevent lipid accumulation in the liver of fructose-fed rats possibly by targeting the Keap1/Nrf2 pathway. PCE may be a promising therapeutic strategy for fructose-associated liver lipid accumulation.


Asunto(s)
Fallopia japonica/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología , Animales , Antioxidantes/metabolismo , Fructosa/efectos adversos , Glutatión/metabolismo , Hígado/metabolismo , Masculino , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Estearoil-CoA Desaturasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
14.
Br J Pharmacol ; 176(11): 1619-1634, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30632134

RESUMEN

BACKGROUND AND PURPOSE: Excessive fructose consumption is a risk factor for liver fibrosis. Pterostilbene protects against liver fibrosis. Here, we investigated the potential role and the mechanisms underlying the hepatocyte epithelial-mesenchymal transition (EMT) in fructose-induced liver fibrosis and protection by pterostilbene. EXPERIMENTAL APPROACH: Characteristic features of liver fibrosis in 10% fructose-fed rats and EMT in 5 mM fructose-exposed BRL-3A cells with or without pterostilbene and the change of miR-34a/Sirt1/p53 and transforming growth factor-ß1 (TGF-ß1)/Smads signalling were examined. MiR-34a inhibitor, miR-34a minic, or p53 siRNA were used to explore the role of miR-34a/Sirt1/p53 signalling in fructose-induced EMT and the action of pterostilbene. KEY RESULTS: Pterostilbene prevented fructose-induced liver injury with fibrosis in rats. Fructose caused hepatocyte undergoing EMT, gaining fibroblast-specific protein 1 and vimentin, and losing E-cadherin, effects attenuated by pterostilbene. Moreover, fructose induced miR-34a overexpression in hepatocytes with down-regulated Sirt1, increased p53 and ac-p53, and activated TGF-ß1/Smads signalling, whereas these disturbances were suppressed by miR-34a inhibitor. Additionally, miR-34a inhibitor and p53 siRNA prevented TGF-ß1-driven hepatocyte EMT under fructose exposure. Pterostilbene down-regulated miR-34a, up-regulated Sirt1, and suppressed p53 activation and TGF-ß1/Smads signalling in fructose-stimulated animals and cells but showed no additional effects with miR-34a inhibitor on miR-34a/Sirt1/p53 signalling in fructose-exposed hepatocytes. CONCLUSIONS AND IMPLICATIONS: These results strongly suggest that activation of miR-34a/Sirt1/p53 signalling is required for fructose-induced hepatocyte EMT mediated by TGF-ß1/Smads signalling, contributing to liver fibrosis in rats. Pterostilbene exhibits a protective effect against liver fibrosis at least partly through inhibiting miR-34a/Sirt1/p53 signalling activation.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Cirrosis Hepática/metabolismo , Sustancias Protectoras/farmacología , Estilbenos/farmacología , Animales , Fructosa , Hepatocitos/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Masculino , MicroARNs/genética , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sirtuina 1/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteína p53 Supresora de Tumor/genética
15.
Oxid Med Cell Longev ; 2019: 1243215, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31871537

RESUMEN

Excessive fructose consumption induces oxidative stress and myocardial fibrosis. Antioxidant compound pterostilbene has cardioprotective effect in experimental animals. This study is aimed at investigating how fructose drove fibrotic responses via oxidative stress in cardiomyocytes and explored the attenuation mechanisms of pterostilbene. We observed fructose-induced myocardial hypertrophy and fibrosis with ROS overproduction in rats. Paired-like homeodomain 2 (Pitx2c) increase, microRNA-15b (miR-15b) low expression, and p53 phosphorylation (p-p53) upregulation, as well as activation of transforming growth factor-ß1 (TGF-ß1)/drosophila mothers against DPP homolog (Smads) signaling and connective tissue growth factor (CTGF) induction, were also detected in fructose-fed rat hearts and fructose-exposed rat myocardial cell line H9c2 cells. The results from p53 siRNA or TGF-ß1 siRNA transfection showed that TGF-ß1-induced upregulation of CTGF expression and p-p53 activated TGF-ß1/Smads signaling in fructose-exposed H9c2 cells. Of note, Pitx2c negatively modulated miR-15b expression via binding to the upstream of the miR-15b genetic loci by chromatin immunoprecipitation and transfection analysis with pEX1-Pitx2c plasmid and Pitx2c siRNA, respectively. In H9c2 cells pretreated with ROS scavenger N-acetylcysteine, or transfected with miR-15b mimic and inhibitor, fructose-induced cardiac ROS overload could drive Pitx2c-mediated miR-15b low expression, then cause p-p53-activated TGF-ß1/Smads signaling and CTGF induction in myocardial fibrosis. We also found that pterostilbene significantly improved myocardial hypertrophy and fibrosis in fructose-fed rats and fructose-exposed H9c2 cells. Pterostilbene reduced cardiac ROS to block Pitx2c-mediated miR-15b low expression and p-p53-dependent TGF-ß1/Smads signaling activation and CTGF induction in high fructose-induced myocardial fibrosis. These results firstly demonstrated that the ROS-driven Pitx2c/miR-15b pathway was required for p-p53-dependent TGF-ß1/Smads signaling activation in fructose-induced myocardial fibrosis. Pterostilbene protected against high fructose-induced myocardial fibrosis through the inhibition of Pitx2c/miR-15b pathway to suppress p-p53-activated TGF-ß1/Smads signaling, warranting the consideration of Pitx2c/miR-15b pathway as a therapeutic target in myocardial fibrosis.


Asunto(s)
Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Fructosa/toxicidad , Cardiopatías/tratamiento farmacológico , Cardiopatías/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estilbenos/uso terapéutico , Animales , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
17.
Redox Biol ; 18: 124-137, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30014902

RESUMEN

Oxidative stress is a critical factor in nonalcoholic fatty liver disease pathogenesis. MicroRNA-200a (miR-200a) is reported to target Kelch-like ECH-associated protein 1 (Keap1), which regulates nuclear factor erythroid 2-related factor 2 (Nrf2) anti-oxidant pathway. Polydatin (3,4',5-trihydroxy-stilbene-3-ß-D-glucoside), a polyphenol found in the rhizome of Polygonum cuspidatum, have anti-oxidative, anti-inflammatory and anti-hyperlipidemic effects. However, whether miR-200a controls Keap1/Nrf2 pathway in fructose-induced liver inflammation and lipid deposition and the blockade of polydatin are still not clear. Here, we detected miR-200a down-regulation, Keap1 up-regulation, Nrf2 antioxidant pathway inactivation, ROS-driven thioredoxin-interacting protein (TXNIP) over-expression, NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome activation and dysregulation of peroxisome proliferator activated receptor-α (PPAR-α), carnitine palmitoyl transferase-1 (CPT-1), sterol regulatory element binging protein 1 (SREBP-1) and stearoyl-CoA desaturase-1 (SCD-1) in rat livers, BRL-3A and HepG2 cells under high fructose induction. Furthermore, the data from the treatment or transfection of miR-200a minic, Keap1 and TXNIP siRNA, Nrf2 activator and ROS inhibitor demonstrated that fructose-induced miR-200a low-expression increased Keap1 to block Nrf2 antioxidant pathway, and then enhanced ROS-driven TXNIP to activate NLRP3 inflammasome and disturb lipid metabolism-related proteins, causing inflammation and lipid deposition in BRL-3A cells. We also found that polydatin up-regulated miR-200a to inhibit Keap1 and activate Nrf2 antioxidant pathway, resulting in attenuation of these disturbances in these animal and cell models. These findings provide a novel pathological mechanism of fructose-induced redox status imbalance and suggest that the enhancement of miR-200a to control Keap1/Nrf2 pathway by polydatin is a therapeutic strategy for fructose-associated liver inflammation and lipid deposition.


Asunto(s)
Antiinflamatorios/uso terapéutico , Fructosa/efectos adversos , Glucósidos/uso terapéutico , Inflamación/inducido químicamente , Inflamación/prevención & control , Hígado/efectos de los fármacos , MicroARNs/inmunología , Estilbenos/uso terapéutico , Animales , Antioxidantes/uso terapéutico , Línea Celular , Medicamentos Herbarios Chinos/uso terapéutico , Inflamación/inmunología , Inflamación/patología , Proteína 1 Asociada A ECH Tipo Kelch/inmunología , Lípidos/análisis , Lípidos/inmunología , Hígado/inmunología , Hígado/patología , Masculino , Factor 2 Relacionado con NF-E2/inmunología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
18.
Nutrients ; 9(4)2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28353649

RESUMEN

High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Dieta , Conducta Alimentaria , Fructosa/efectos adversos , Inflamación/etiología , Síndrome Metabólico/etiología , Estrés Oxidativo , Adipoquinas/sangre , Citocinas/sangre , Endotoxinas/sangre , Fructosa/metabolismo , Humanos , Hígado/efectos de los fármacos , Síndrome Metabólico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA